PyTorch implementation of ''Background Activation Suppression for Weakly Supervised Object Localization''.

Related tags

GeolocationBAS
Overview

Background Activation Suppression for Weakly Supervised Object Localization

PyTorch implementation of ''Background Activation Suppression for Weakly Supervised Object Localization''. This repository contains PyTorch training code, inference code and pretrained models.

📋 Table of content

  1. 📎 Paper Link
  2. 💡 Abstract
  3. Motivation
  4. 📖 Method
  5. 📃 Requirements
  6. ✏️ Usage
    1. Start
    2. Download Datasets
    3. Training
    4. Inference
  7. 📊 Experimental Results
  8. ✉️ Statement
  9. 🔍 Citation

📎 Paper Link

Background Activation Suppression for Weakly Supervised Object Localization (link)

  • Authors: Pingyu Wu*, Wei Zhai*, Yang Cao
  • Institution: University of Science and Technology of China (USTC)

💡 Abstract

Weakly supervised object localization (WSOL) aims to localize the object region using only image-level labels as supervision. Recently a new paradigm has emerged by generating a foreground prediction map (FPM) to achieve the localization task. Existing FPM-based methods use cross-entropy (CE) to evaluate the foreground prediction map and to guide the learning of generator. We argue for using activation value to achieve more efficient learning. It is based on the experimental observation that, for a trained network, CE converges to zero when the foreground mask covers only part of the object region. While activation value increases until the mask expands to the object boundary, which indicates that more object areas can be learned by using activation value. In this paper, we propose a Background Activation Suppression (BAS) method. Specifically, an Activation Map Constraint module (AMC) is designed to facilitate the learning of generator by suppressing the background activation values. Meanwhile, by using the foreground region guidance and the area constraint, BAS can learn the whole region of the object. Furthermore, in the inference phase, we consider the prediction maps of different categories together to obtain the final localization results. Extensive experiments show that BAS achieves significant and consistent improvement over the baseline methods on the CUB-200-2011 and ILSVRC datasets.

Motivation


Motivation. (A) The entroy value of CE loss $w.r.t$ foreground mask and foreground activation value $w.r.t$ foreground mask. To illustrate the generality of this phenomenon, more examples are shown in the subfigure on the right. (B) Experimental procedure and related definitions. Implementation details of the experiment and further results are available in the Supplementary Material.

Exploratory Experiment

We introduce the implementation of the experiment, as shown in Fig. \ref{Exploratory Experiment} (A). For a given GT binary mask, the activation value (Activation) and cross-entropy (Entropy) corresponding to this mask are generated by masking the feature map. We erode and dilate the ground-truth mask with a convolution of kernel size $5n \times 5n$, obtain foreground masks with different area sizes by changing the value of $n$, and plot the activation value versus cross-entropy with the area as the horizontal axis, as shown in Fig. \ref{Exploratory Experiment} (B). By inverting the foreground mask, the corresponding background activation values for the foreground mask area are generated in the same way. In Fig. \ref{Exploratory Experiment} (C), we show the curves of entropy, foreground activation, and background activation with mask area. It can be noticed that both background activation and foreground activation values have a higher correlation with the mask compared to the entropy. We show more examples in the Supplementary Material.


Exploratory Experiment. Examples about the entroy value of CE loss $w.r.t$ foreground mask and foreground activation value $w.r.t$ foreground mask.

📖 Method


The architecture of the proposed BAS. In the training phase, the class-specific foreground prediction map $F^{fg}$ and the coupled background prediction map $F^{bg}$ are obtained by the generator, and then fed into the activation map constraint module together with the feature map $F$. In the inference phase, we utilize Top-k to generate the final localization map.

📃 Requirements

  • python 3.6.10
  • torch 1.4.0
  • torchvision 0.5.0
  • opencv 4.5.3

✏️ Usage

Start

git clone https://github.com/wpy1999/BAS.git
cd BAS

Download Datasets

Training

We will release our training code upon acceptance.

Inference

To test the CUB models, you can download the trained models from [ Google Drive (VGG16) ], [ Google Drive (Mobilenetv1) ], [ Google Drive (ResNet50) ], [ Google Drive (Inceptionv3) ], then run BAS_inference.py:

cd CUB
python BAS_inference.py --arch ${Backbone}

To test the ILSVRC models, you can download the trained models from [ Google Drive (VGG16) ], [ Google Drive (Mobilenetv1) ], [ Google Drive (ResNet50) ], [ Google Drive (Inceptionv3) ], then run BAS_inference.py:

cd ILSVRC
python BAS_inference.py --arch ${Backbone}

📊 Experimental Results



✉️ Statement

This project is for research purpose only, please contact us for the licence of commercial use. For any other questions please contact [email protected] or [email protected].

🔍 Citation

@inproceedings{BAS,
  title={Background Activation Suppression for Weakly Supervised Object Localization},
  author={Pingyu Wu and Wei Zhai and Yang Cao},
  journal={arXiv preprint arXiv:2112.00580},
  year={2021}
}
Solving the Traveling Salesman Problem using Self-Organizing Maps

Solving the Traveling Salesman Problem using Self-Organizing Maps This repository contains an implementation of a Self Organizing Map that can be used

Diego Vicente 3.1k Dec 31, 2022
PySAL: Python Spatial Analysis Library Meta-Package

Python Spatial Analysis Library PySAL, the Python spatial analysis library, is an open source cross-platform library for geospatial data science with

Python Spatial Analysis Library 1.1k Dec 18, 2022
Geospatial Image Processing for Python

GIPPY Gippy is a Python library for image processing of geospatial raster data. The core of the library is implemented as a C++ library, libgip, with

GIPIT 83 Aug 19, 2022
A Python package for delineating nested surface depressions from digital elevation data.

Welcome to the lidar package lidar is Python package for delineating the nested hierarchy of surface depressions in digital elevation models (DEMs). I

Qiusheng Wu 166 Jan 03, 2023
Replace MSFS2020's bing map to google map

English verison here 中文 免责声明 本教程提到的方法仅用于研究和学习用途。我不对使用、拓展该教程及方法所造成的任何法律责任和损失负责。 背景 微软模拟飞行2020的地景使用了Bing的卫星地图,然而卫星地图比较老旧,很多地区都是几年前的图设置直接是没有的。这种现象在全球不同地区

hesicong 272 Dec 24, 2022
Script that allows to download data with satellite's orbit height and create CSV with their change in time.

Satellite orbit height ◾ Requirements Python = 3.8 Packages listen in reuirements.txt (run pip install -r requirements.txt) Account on Space Track ◾

Alicja Musiał 2 Jan 17, 2022
Specification for storing geospatial vector data (point, line, polygon) in Parquet

GeoParquet About This repository defines how to store geospatial vector data (point, lines, polygons) in Apache Parquet, a popular columnar storage fo

Open Geospatial Consortium 449 Dec 27, 2022
Helping data scientists better understand their datasets and models in text classification. With love from ServiceNow.

Azimuth, an open-source dataset and error analysis tool for text classification, with love from ServiceNow. Overview Azimuth is an open source applica

ServiceNow 145 Dec 23, 2022
peartree: A library for converting transit data into a directed graph for sketch network analysis.

peartree 🍐 🌳 peartree is a library for converting GTFS feed schedules into a representative directed network graph. The tool uses Partridge to conve

Kuan Butts 183 Dec 29, 2022
Program that shows all the details of the given IP address. Build with Python and ipinfo.io API

ip-details This is a program that shows all the details of the given IP address. Build with Python and ipinfo.io API Usage To use this program, run th

4 Mar 01, 2022
EOReader is a multi-satellite reader allowing you to open optical and SAR data.

Remote-sensing opensource python library reading optical and SAR sensors, loading and stacking bands, clouds, DEM and index.

ICube-SERTIT 152 Dec 30, 2022
Open Data Cube analyses continental scale Earth Observation data through time

Open Data Cube Core Overview The Open Data Cube Core provides an integrated gridded data analysis environment for decades of analysis ready earth obse

Open Data Cube 410 Dec 13, 2022
A toolbox for processing earth observation data with Python.

eo-box eobox is a Python package with a small collection of tools for working with Remote Sensing / Earth Observation data. Package Overview So far, t

13 Jan 06, 2022
Blender addons to make the bridge between Blender and geographic data

Blender GIS Blender minimal version : 2.8 Mac users warning : currently the addon does not work on Mac with Blender 2.80 to 2.82. Please do not report

5.9k Jan 02, 2023
Google maps for Jupyter notebooks

gmaps gmaps is a plugin for including interactive Google maps in the IPython Notebook. Let's plot a heatmap of taxi pickups in San Francisco: import g

Pascal Bugnion 747 Dec 19, 2022
leafmap - A Python package for geospatial analysis and interactive mapping in a Jupyter environment.

A Python package for geospatial analysis and interactive mapping with minimal coding in a Jupyter environment

Qiusheng Wu 1.4k Jan 02, 2023
A compilation of several single-beam bathymetry surveys of the Caribbean

Caribbean - Single-beam bathymetry This dataset is a compilation of several single-beam bathymetry surveys of the Caribbean ocean displaying a wide ra

Fatiando a Terra Datasets 0 Jan 20, 2022
Stitch image tiles into larger composite TIFs

untiler Utility to take a directory of {z}/{x}/{y}.(jpg|png) tiles, and stitch into a scenetiff (tif w/ exact merc tile bounds). Future versions will

Mapbox 38 Dec 16, 2022
Advanced raster and geometry manipulations

buzzard In a nutshell, the buzzard library provides powerful abstractions to manipulate together images and geometries that come from different kind o

Earthcube Lab 30 Jun 20, 2022
Python bindings to libpostal for fast international address parsing/normalization

pypostal These are the official Python bindings to https://github.com/openvenues/libpostal, a fast statistical parser/normalizer for street addresses

openvenues 651 Dec 16, 2022