Code for the "Sensing leg movement enhances wearable monitoring of energy expenditure" paper.

Overview

EnergyExpenditure

DOI

Code for the "Sensing leg movement enhances wearable monitoring of energy expenditure" paper. Additional data for replicating this study is available: https://simtk.org/projects/energy-est

Please cite this work if you use materials from it:

Slade, P., Kochenderfer, M.J., Delp, S.L. et al. Sensing leg movement enhances wearable monitoring of energy expenditure. Nat Commun 12, 4312 (2021).

This folder contains data, code, and results for validating the Wearable System. The software version, package dependencies, and installation instructions are listed at the bottom of this note.

The code folder contains python notebook files to process the raw validation data and produce energy expenditure estimates (compute_real_time_results.ipynb) and compute the figures from the paper (plots.ipynb). These files are Jupyter Notebook files, detailed instructions on this type of file and how to open them are available (https://jupyter-notebook.readthedocs.io/en/stable/examples/Notebook/Notebook%20Basics.html). Once the files are open select 'Run' and then 'Run all cells'. The output will appear below each cell. The compute_real_time_results.ipynb will plot the energy expenditure estimates of the Wearable System and raw metabolics measurements as well as the absolute percent error between the steady-state estimates of the Wearable System and metabolics. The plots.ipynb will produce replicates of the images shown in the manuscript for validating the processing of the different methods of estimating energy expenditure. The runtime is approximately 5 minutes on a "normal" desktop.

The real_time_model folder contains the weights for the linear regression model used by the Wearable System and the python file used to estimate energy expenditure in real time on the portable microcontroller (real_time_est.py).

The real_time_validation_data folder contains the metabolics and raw inertial measurement data for one of the validation subjects. This folder will need to be unzipped before being used. Each subject folder contains the raw metabolics data as a .xlsx file and conditions folders. The conditions folders contain the raw inertial measurement data broken into five second increments, stored in sequential 'npy' files. The file_timestamp.csv contains the timestamps when each of the 'npy' files were saved. The energy_exp_estimates.csv contains columns of the time from the start of the condition, date, and energy expenditure in Watts.

The results folder contains the estimates computed from the compute_real_time_results.ipynb to replicate the real-time Wearable System estimates from the validation experiment. The full_data folder contain all the data for the compared methods across all subjects to be able to replicate the figures in the paper.

The full dataset is available to reviewers in a private repository linked in the paper, but was not included in this folder due to size constraints. Upon acceptence this will be published in a public repository. This includes all simulation models, all data from each of the experiments, code to train the energy expenditure models, and processing code to compute estimates from the compared methods (heart rate, smartwatch, etc).

Python version 3.6.1 Modules: pandas (0.25.3) numpy (1.17.4) scikit-learn (0.21.3) scipy (1.3.2) setuptools (27.2.0) natsort (6.2.0) matplotlib (2.0.2) jupyter (1.0.0) ipython (5.3.0)

The installation process for Python and related packages will depend on the users operating system, but should take approximately 10 minutes on a "normal" desktop. See the python package installation guide for instructions: https://packaging.python.org/tutorials/installing-packages/

You might also like...
code for our ICCV 2021 paper
code for our ICCV 2021 paper "DeepCAD: A Deep Generative Network for Computer-Aided Design Models"

DeepCAD This repository provides source code for our paper: DeepCAD: A Deep Generative Network for Computer-Aided Design Models Rundi Wu, Chang Xiao,

Dataset and Code for ICCV 2021 paper
Dataset and Code for ICCV 2021 paper "Real-world Video Super-resolution: A Benchmark Dataset and A Decomposition based Learning Scheme"

Dataset and Code for RealVSR Real-world Video Super-resolution: A Benchmark Dataset and A Decomposition based Learning Scheme Xi Yang, Wangmeng Xiang,

Code for paper "Role-based network embedding via structural features reconstruction with degree-regularized constraint"

Role-based network embedding via structural features reconstruction with degree-regularized constraint Train python main.py --dataset brazil-flights

Code for the paper: Fusformer: A Transformer-based Fusion Approach for Hyperspectral Image Super-resolution

Fusformer Code for the paper: "Fusformer: A Transformer-based Fusion Approach for Hyperspectral Image Super-resolution" Plateform Python 3.8.5 + Pytor

The code for CVPR2022 paper "Likert Scoring with Grade Decoupling for Long-term Action Assessment".

Likert Scoring with Grade Decoupling for Long-term Action Assessment This is the code for CVPR2022 paper "Likert Scoring with Grade Decoupling for Lon

Code for CVPR 2022 paper
Code for CVPR 2022 paper "SoftGroup for Instance Segmentation on 3D Point Clouds"

SoftGroup We provide code for reproducing results of the paper SoftGroup for 3D Instance Segmentation on Point Clouds (CVPR 2022) Author: Thang Vu, Ko

Code for CVPR'2022 paper ✨
Code for CVPR'2022 paper ✨ "Predict, Prevent, and Evaluate: Disentangled Text-Driven Image Manipulation Empowered by Pre-Trained Vision-Language Model"

PPE ✨ Repository for our CVPR'2022 paper: Predict, Prevent, and Evaluate: Disentangled Text-Driven Image Manipulation Empowered by Pre-Trained Vision-

Code for CVPR 2022 paper
Code for CVPR 2022 paper "Bailando: 3D dance generation via Actor-Critic GPT with Choreographic Memory"

Bailando Code for CVPR 2022 (oral) paper "Bailando: 3D dance generation via Actor-Critic GPT with Choreographic Memory" [Paper] | [Project Page] | [Vi

Fast image augmentation library and easy to use wrapper around other libraries. Documentation:  https://albumentations.ai/docs/ Paper about library: https://www.mdpi.com/2078-2489/11/2/125
Fast image augmentation library and easy to use wrapper around other libraries. Documentation: https://albumentations.ai/docs/ Paper about library: https://www.mdpi.com/2078-2489/11/2/125

Albumentations Albumentations is a Python library for image augmentation. Image augmentation is used in deep learning and computer vision tasks to inc

Releases(v1.0.0)
Owner
Patrick S
Patrick S
pyntcloud is a Python library for working with 3D point clouds.

pyntcloud is a Python library for working with 3D point clouds.

David de la Iglesia Castro 1.2k Jan 07, 2023
An Implementation of the alogrithm in paper IncepText: A New Inception-Text Module with Deformable PSROI Pooling for Multi-Oriented Scene Text Detection

InceptText-Tensorflow An Implementation of the alogrithm in paper IncepText: A New Inception-Text Module with Deformable PSROI Pooling for Multi-Orien

GeorgeJoe 115 Dec 12, 2022
Here use convulation with sobel filter from scratch in opencv python .

Here use convulation with sobel filter from scratch in opencv python .

Tamzid hasan 2 Nov 11, 2021
kaldi-asr/kaldi is the official location of the Kaldi project.

Kaldi Speech Recognition Toolkit To build the toolkit: see ./INSTALL. These instructions are valid for UNIX systems including various flavors of Linux

Kaldi 12.3k Jan 05, 2023
Handwritten Number Recognition using CNN and Character Segmentation

Handwritten-Number-Recognition-With-Image-Segmentation Info About this repository This Repository is aimed at reading handwritten images of numbers an

Sparsha Saha 17 Aug 25, 2022
This is a Computer vision package that makes its easy to run Image processing and AI functions. At the core it uses OpenCV and Mediapipe libraries.

CVZone This is a Computer vision package that makes its easy to run Image processing and AI functions. At the core it uses OpenCV and Mediapipe librar

CVZone 648 Dec 30, 2022
Repository of conference publications and source code for first-/ second-authored papers published at NeurIPS, ICML, and ICLR.

Repository of conference publications and source code for first-/ second-authored papers published at NeurIPS, ICML, and ICLR.

Daniel Jarrett 26 Jun 17, 2021
A collection of resources (including the papers and datasets) of OCR (Optical Character Recognition).

OCR Resources This repository contains a collection of resources (including the papers and datasets) of OCR (Optical Character Recognition). Contents

Zuming Huang 363 Jan 03, 2023
Scene text recognition

AttentionOCR for Arbitrary-Shaped Scene Text Recognition Introduction This is the ranked No.1 tensorflow based scene text spotting algorithm on ICDAR2

777 Jan 09, 2023
An application of high resolution GANs to dewarp images of perturbed documents

Docuwarp This project is focused on dewarping document images through the usage of pix2pixHD, a GAN that is useful for general image to image translat

Thomas Huang 97 Dec 25, 2022
Converts an image into funny, smaller amongus characters

SussyImage Converts an image into funny, smaller amongus characters Demo Mona Lisa | Lona Misa (Made up of AmongUs characters) API I've also added an

Dhravya Shah 14 Aug 18, 2022
([email protected]) Boosting Co-teaching with Compression Regularization for Label Noise

Nested-Co-teaching ([email protected]) Pytorch implementation of paper "Boosting Co-tea

YINGYI CHEN 41 Jan 03, 2023
This is a pytorch re-implementation of EAST: An Efficient and Accurate Scene Text Detector.

EAST: An Efficient and Accurate Scene Text Detector Description: This version will be updated soon, please pay attention to this work. The motivation

Dejia Song 544 Dec 20, 2022
A Screen Translator/OCR Translator made by using Python and Tesseract, the user interface are made using Tkinter. All code written in python.

About An OCR translator tool. Made by me by utilizing Tesseract, compiled to .exe using pyinstaller. I made this program to learn more about python. I

Fauzan F A 41 Dec 30, 2022
How to detect objects in real time by using Jupyter Notebook and Neural Networks , by using Yolo3

Real Time Object Recognition From your Screen Desktop . In this post, I will explain how to build a simply program to detect objects from you desktop

Ruslan Magana Vsevolodovna 2 Sep 28, 2022
It is a image ocr tool using the Tesseract-OCR engine with the pytesseract package and has a GUI.

OCR-Tool It is a image ocr tool made in Python using the Tesseract-OCR engine with the pytesseract package and has a GUI. This is my second ever pytho

Khant Htet Aung 4 Jul 11, 2022
Handwriting Recognition System based on a deep Convolutional Recurrent Neural Network architecture

Handwriting Recognition System This repository is the Tensorflow implementation of the Handwriting Recognition System described in Handwriting Recogni

Edgard Chammas 346 Jan 07, 2023
A facial recognition device is a device that takes an image or a video of a human face and compares it to another image faces in a database.

A facial recognition device is a device that takes an image or a video of a human face and compares it to another image faces in a database. The structure, shape and proportions of the faces are comp

Pavankumar Khot 4 Mar 19, 2022
Multi-Oriented Scene Text Detection via Corner Localization and Region Segmentation

This is the official implementation of "Multi-Oriented Scene Text Detection via Corner Localization and Region Segmentation". For more details, please

Pengyuan Lyu 309 Dec 06, 2022
Textboxes : Image Text Detection Model : python package (tensorflow)

shinTB Abstract A python package for use Textboxes : Image Text Detection Model implemented by tensorflow, cv2 Textboxes Paper Review in Korean (My Bl

Jayne Shin (신재인) 91 Dec 15, 2022