Code for the "Sensing leg movement enhances wearable monitoring of energy expenditure" paper.

Overview

EnergyExpenditure

DOI

Code for the "Sensing leg movement enhances wearable monitoring of energy expenditure" paper. Additional data for replicating this study is available: https://simtk.org/projects/energy-est

Please cite this work if you use materials from it:

Slade, P., Kochenderfer, M.J., Delp, S.L. et al. Sensing leg movement enhances wearable monitoring of energy expenditure. Nat Commun 12, 4312 (2021).

This folder contains data, code, and results for validating the Wearable System. The software version, package dependencies, and installation instructions are listed at the bottom of this note.

The code folder contains python notebook files to process the raw validation data and produce energy expenditure estimates (compute_real_time_results.ipynb) and compute the figures from the paper (plots.ipynb). These files are Jupyter Notebook files, detailed instructions on this type of file and how to open them are available (https://jupyter-notebook.readthedocs.io/en/stable/examples/Notebook/Notebook%20Basics.html). Once the files are open select 'Run' and then 'Run all cells'. The output will appear below each cell. The compute_real_time_results.ipynb will plot the energy expenditure estimates of the Wearable System and raw metabolics measurements as well as the absolute percent error between the steady-state estimates of the Wearable System and metabolics. The plots.ipynb will produce replicates of the images shown in the manuscript for validating the processing of the different methods of estimating energy expenditure. The runtime is approximately 5 minutes on a "normal" desktop.

The real_time_model folder contains the weights for the linear regression model used by the Wearable System and the python file used to estimate energy expenditure in real time on the portable microcontroller (real_time_est.py).

The real_time_validation_data folder contains the metabolics and raw inertial measurement data for one of the validation subjects. This folder will need to be unzipped before being used. Each subject folder contains the raw metabolics data as a .xlsx file and conditions folders. The conditions folders contain the raw inertial measurement data broken into five second increments, stored in sequential 'npy' files. The file_timestamp.csv contains the timestamps when each of the 'npy' files were saved. The energy_exp_estimates.csv contains columns of the time from the start of the condition, date, and energy expenditure in Watts.

The results folder contains the estimates computed from the compute_real_time_results.ipynb to replicate the real-time Wearable System estimates from the validation experiment. The full_data folder contain all the data for the compared methods across all subjects to be able to replicate the figures in the paper.

The full dataset is available to reviewers in a private repository linked in the paper, but was not included in this folder due to size constraints. Upon acceptence this will be published in a public repository. This includes all simulation models, all data from each of the experiments, code to train the energy expenditure models, and processing code to compute estimates from the compared methods (heart rate, smartwatch, etc).

Python version 3.6.1 Modules: pandas (0.25.3) numpy (1.17.4) scikit-learn (0.21.3) scipy (1.3.2) setuptools (27.2.0) natsort (6.2.0) matplotlib (2.0.2) jupyter (1.0.0) ipython (5.3.0)

The installation process for Python and related packages will depend on the users operating system, but should take approximately 10 minutes on a "normal" desktop. See the python package installation guide for instructions: https://packaging.python.org/tutorials/installing-packages/

You might also like...
code for our ICCV 2021 paper
code for our ICCV 2021 paper "DeepCAD: A Deep Generative Network for Computer-Aided Design Models"

DeepCAD This repository provides source code for our paper: DeepCAD: A Deep Generative Network for Computer-Aided Design Models Rundi Wu, Chang Xiao,

Dataset and Code for ICCV 2021 paper
Dataset and Code for ICCV 2021 paper "Real-world Video Super-resolution: A Benchmark Dataset and A Decomposition based Learning Scheme"

Dataset and Code for RealVSR Real-world Video Super-resolution: A Benchmark Dataset and A Decomposition based Learning Scheme Xi Yang, Wangmeng Xiang,

Code for paper "Role-based network embedding via structural features reconstruction with degree-regularized constraint"

Role-based network embedding via structural features reconstruction with degree-regularized constraint Train python main.py --dataset brazil-flights

Code for the paper: Fusformer: A Transformer-based Fusion Approach for Hyperspectral Image Super-resolution

Fusformer Code for the paper: "Fusformer: A Transformer-based Fusion Approach for Hyperspectral Image Super-resolution" Plateform Python 3.8.5 + Pytor

The code for CVPR2022 paper "Likert Scoring with Grade Decoupling for Long-term Action Assessment".

Likert Scoring with Grade Decoupling for Long-term Action Assessment This is the code for CVPR2022 paper "Likert Scoring with Grade Decoupling for Lon

Code for CVPR 2022 paper
Code for CVPR 2022 paper "SoftGroup for Instance Segmentation on 3D Point Clouds"

SoftGroup We provide code for reproducing results of the paper SoftGroup for 3D Instance Segmentation on Point Clouds (CVPR 2022) Author: Thang Vu, Ko

Code for CVPR'2022 paper ✨
Code for CVPR'2022 paper ✨ "Predict, Prevent, and Evaluate: Disentangled Text-Driven Image Manipulation Empowered by Pre-Trained Vision-Language Model"

PPE ✨ Repository for our CVPR'2022 paper: Predict, Prevent, and Evaluate: Disentangled Text-Driven Image Manipulation Empowered by Pre-Trained Vision-

Code for CVPR 2022 paper
Code for CVPR 2022 paper "Bailando: 3D dance generation via Actor-Critic GPT with Choreographic Memory"

Bailando Code for CVPR 2022 (oral) paper "Bailando: 3D dance generation via Actor-Critic GPT with Choreographic Memory" [Paper] | [Project Page] | [Vi

Fast image augmentation library and easy to use wrapper around other libraries. Documentation:  https://albumentations.ai/docs/ Paper about library: https://www.mdpi.com/2078-2489/11/2/125
Fast image augmentation library and easy to use wrapper around other libraries. Documentation: https://albumentations.ai/docs/ Paper about library: https://www.mdpi.com/2078-2489/11/2/125

Albumentations Albumentations is a Python library for image augmentation. Image augmentation is used in deep learning and computer vision tasks to inc

Releases(v1.0.0)
Owner
Patrick S
Patrick S
Roboflow makes managing, preprocessing, augmenting, and versioning datasets for computer vision seamless.

Roboflow makes managing, preprocessing, augmenting, and versioning datasets for computer vision seamless. This is the official Roboflow python package that interfaces with the Roboflow API.

Roboflow 52 Dec 23, 2022
Code for the head detector (HeadHunter) proposed in our CVPR 2021 paper Tracking Pedestrian Heads in Dense Crowd.

Head Detector Code for the head detector (HeadHunter) proposed in our CVPR 2021 paper Tracking Pedestrian Heads in Dense Crowd. The head_detection mod

Ramana Subramanyam 76 Dec 06, 2022
Deskew is a command line tool for deskewing scanned text documents. It uses Hough transform to detect "text lines" in the image. As an output, you get an image rotated so that the lines are horizontal.

Deskew by Marek Mauder https://galfar.vevb.net/deskew https://github.com/galfar/deskew v1.30 2019-06-07 Overview Deskew is a command line tool for des

Marek Mauder 127 Dec 03, 2022
Train custom VR face tracking parameters

Pal Buddy Guy: The anipal's best friend This is a small script to improve upon the tracking capabilities of the Vive Pro Eye and facial tracker. You c

7 Dec 12, 2021
A post-processing tool for scanned sheets of paper.

unpaper Originally written by Jens Gulden — see AUTHORS for more information. Licensed under GNU GPL v2 — see COPYING for more information. Overview u

27 Dec 07, 2022
This is a GUI program which consist of 4 OpenCV projects

Tkinter-OpenCV Project Using Tkinter, Opencv, Mediapipe This is a python GUI program using Tkinter which consist of 4 OpenCV projects 1. Finger Counte

Arya Bagde 3 Feb 22, 2022
Document Image Dewarping

Document image dewarping using text-lines and line Segments Abstract Conventional text-line based document dewarping methods have problems when handli

Taeho Kil 268 Dec 23, 2022
Handwritten_Text_Recognition

Deep Learning framework for Line-level Handwritten Text Recognition Short presentation of our project Introduction Installation 2.a Install conda envi

24 Jul 15, 2022
Memory tests solver with using OpenCV

Human Benchmark project This project is OpenCV based programs which are puzzle solvers for 7 different games for https://humanbenchmark.com/. made as

Bahadır Araz 24 Dec 27, 2022
Image augmentation library in Python for machine learning.

Augmentor is an image augmentation library in Python for machine learning. It aims to be a standalone library that is platform and framework independe

Marcus D. Bloice 4.8k Jan 04, 2023
OpenCVを用いたカメラキャリブレーションのサンプルです。2021/06/21時点でPython実装のある3種類(通常カメラ向け、魚眼レンズ向け(fisheyeモジュール)、全方位カメラ向け(omnidirモジュール))について用意しています。

OpenCV-CameraCalibration-Example FishEyeCameraCalibration.mp4 OpenCVを用いたカメラキャリブレーションのサンプルです 2021/06/21時点でPython実装のある以下3種類について用意しています。 通常カメラ向け 魚眼レンズ向け(

KazuhitoTakahashi 34 Nov 17, 2022
This repository provides train&test code, dataset, det.&rec. annotation, evaluation script, annotation tool, and ranking.

SCUT-CTW1500 Datasets We have updated annotations for both train and test set. Train: 1000 images [images][annos] Additional point annotation for each

Yuliang Liu 600 Dec 18, 2022
A simple demo program for using OpenCV on Android

Kivy OpenCV Demo A simple demo program for using OpenCV on Android Build with: buildozer android debug deploy run Run (on desktop) with: python main.p

Andrea Ranieri 13 Dec 29, 2022
An Optical Character Recognition system using Pytesseract/Extracting data from Blood Pressure Reports.

Optical_Character_Recognition An Optical Character Recognition system using Pytesseract/Extracting data from Blood Pressure Reports. As an IOT/Compute

Ramsis Hammadi 1 Feb 12, 2022
(CVPR 2021) ST3D: Self-training for Unsupervised Domain Adaptation on 3D Object Detection

ST3D Code release for the paper ST3D: Self-training for Unsupervised Domain Adaptation on 3D Object Detection, CVPR 2021 Authors: Jihan Yang*, Shaoshu

CVMI Lab 224 Dec 28, 2022
Use Convolutional Recurrent Neural Network to recognize the Handwritten line text image without pre segmentation into words or characters. Use CTC loss Function to train.

Handwritten Line Text Recognition using Deep Learning with Tensorflow Description Use Convolutional Recurrent Neural Network to recognize the Handwrit

sushant097 224 Jan 07, 2023
Rubik's Cube in pygame with OpenGL

Rubik Rubik's Cube in pygame with OpenGL The script show on the screen a Rubik Cube buit with OpenGL. Then I have also implemented all the possible mo

Gabro 2 Apr 15, 2022
This repo contains several opencv projects done while learning opencv in python.

opencv-projects-python This repo contains both several opencv projects done while learning opencv by python and opencv learning resources [Basic conce

Fatin Shadab 2 Nov 03, 2022
Image Recognition Model Generator

Takes a user-inputted query and generates a machine learning image recognition model that determines if an inputted image is or isn't their query

Christopher Oka 1 Jan 13, 2022
Deep LearningImage Captcha 2

滑动验证码深度学习识别 本项目使用深度学习 YOLOV3 模型来识别滑动验证码缺口,基于 https://github.com/eriklindernoren/PyTorch-YOLOv3 修改。 只需要几百张缺口标注图片即可训练出精度高的识别模型,识别效果样例: 克隆项目 运行命令: git cl

Python3WebSpider 117 Dec 28, 2022