Code for the paper "Flexible Generation of Natural Language Deductions"

Overview

Flexible Generation of Natural Language Deductions

a.k.a. ParaPattern

https://arxiv.org/abs/2104.08825

Kaj Bostrom, Lucy Zhao, Swarat Chaudhuri, and Greg Durrett

This repository contains all the code needed to replicate the experiments from the paper, and additionally provides a set of tools to put together new natural language deduction operations from scratch.

In the data/ folder, you'll find all the data used to train and evaluate our models, already preprocessed and ready to go, with the exception of the MNLI dataset due to its size - if you want to replicate our MNLI-BART baseline, you'll need to download a copy of MNLI and run data/mnli/filter.py for yourself. The data folder also contains several generic conversion scripts, which you may find useful for processing operation training examples, as well as paraphrase.py, which does automatic paraphrase generation if you pass it a path to a suitable sequence-to-sequence paraphrasing model checkpoint, e.g. https://huggingface.co/tuner007/pegasus_paraphrase

In the modeling/ folder, you'll find the fine-tuning code needed to train operation models, as well as scripts to run all the evaluations described in the paper. Just make sure you're on transformers version 4.2.1, not the latest version, since several of the scripts are carefully built around bugs that have since been patched out of the library.

If you have access to multiple GPUs, you can change the --nproc_per_node argument in finetune.sh from 1 to whatever number of GPUs you want to use for training.

In the dep_search/ folder, you'll find tools to perform bulk dependency parsing using spaCy, as well as scripts to index the resulting stream of dependency trees and scrape them using dependency patterns. For reference, the templates used in the paper live in dep_search/templates/. If you want to write your own templates, a good place to start is playing around with the dependency pattern DSL using dep_search.struct_query.parse_query - if you're wondering how to express a given syntactic pattern, you can start by calling dep_search.struct_query.Head.from_spacy on a spaCy token; this will construct a syntactic pattern without any slots from that token's dependency subtree. Printing patterns this way is a great way to familiarize yourself with dependency structure if you need to brush up on that stuff (I can never remember what POS tag/arc label conventions spaCy uses so I was printing out a lot of these trees while I was developing the templates we used in the paper).

Unfortunately, I never got around to optimizing the syntactic search process all that well, so for large free-text corpora (~=100M sentences or more) it can take a day or two to do a full run of parsing and indexing using dep_search/scrape.py. I find a good way to iterate on a pattern is to start by casting a really broad net, and then narrow down your pattern on a subset of those results so that you don't have to re-index your whole original corpus each time you make a small change to a template.

Owner
Kaj Bostrom
PhD student at UT Austin Computer Science. Studying NLP (reading comprehension/language understanding in particular)
Kaj Bostrom
Code for the paper: Sequence-to-Sequence Learning with Latent Neural Grammars

Code for the paper: Sequence-to-Sequence Learning with Latent Neural Grammars

Yoon Kim 43 Dec 23, 2022
A Python/Pytorch app for easily synthesising human voices

Voice Cloning App A Python/Pytorch app for easily synthesising human voices Documentation Discord Server Video guide Voice Sharing Hub FAQ's System Re

Ben Andrew 840 Jan 04, 2023
Ecco is a python library for exploring and explaining Natural Language Processing models using interactive visualizations.

Visualize, analyze, and explore NLP language models. Ecco creates interactive visualizations directly in Jupyter notebooks explaining the behavior of Transformer-based language models (like GPT2, BER

Jay Alammar 1.6k Dec 25, 2022
CrossNER: Evaluating Cross-Domain Named Entity Recognition (AAAI-2021)

CrossNER is a fully-labeled collected of named entity recognition (NER) data spanning over five diverse domains (Politics, Natural Science, Music, Literature, and Artificial Intelligence) with specia

Zihan Liu 89 Nov 10, 2022
Official PyTorch code for ClipBERT, an efficient framework for end-to-end learning on image-text and video-text tasks

Official PyTorch code for ClipBERT, an efficient framework for end-to-end learning on image-text and video-text tasks. It takes raw videos/images + text as inputs, and outputs task predictions. ClipB

Jie Lei 雷杰 612 Jan 04, 2023
基于pytorch+bert的中文事件抽取

pytorch_bert_event_extraction 基于pytorch+bert的中文事件抽取,主要思想是QA(问答)。 要预先下载好chinese-roberta-wwm-ext模型,并在运行时指定模型的位置。

西西嘛呦 31 Nov 30, 2022
Pytorch implementation of winner from VQA Chllange Workshop in CVPR'17

2017 VQA Challenge Winner (CVPR'17 Workshop) pytorch implementation of Tips and Tricks for Visual Question Answering: Learnings from the 2017 Challeng

Mark Dong 166 Dec 11, 2022
ChatterBot is a machine learning, conversational dialog engine for creating chat bots

ChatterBot ChatterBot is a machine-learning based conversational dialog engine build in Python which makes it possible to generate responses based on

Gunther Cox 12.8k Jan 03, 2023
This repository will contain the code for the CVPR 2021 paper "GIRAFFE: Representing Scenes as Compositional Generative Neural Feature Fields"

GIRAFFE: Representing Scenes as Compositional Generative Neural Feature Fields Project Page | Paper | Supplementary | Video | Slides | Blog | Talk If

1.1k Dec 27, 2022
Train 🤗-transformers model with Poutyne.

poutyne-transformers Train 🤗 -transformers models with Poutyne. Installation pip install poutyne-transformers Example import torch from transformers

Lennart Keller 2 Dec 18, 2022
Download videos from YouTube/Twitch/Twitter right in the Windows Explorer, without installing any shady shareware apps

youtube-dl and ffmpeg Windows Explorer Integration Download videos from YouTube/Twitch/Twitter and more (any platform that is supported by youtube-dl)

Wolfgang 226 Dec 30, 2022
Active learning for text classification in Python

Active Learning allows you to efficiently label training data in a small-data scenario.

Webis 375 Dec 28, 2022
TextAttack 🐙 is a Python framework for adversarial attacks, data augmentation, and model training in NLP

TextAttack 🐙 Generating adversarial examples for NLP models [TextAttack Documentation on ReadTheDocs] About • Setup • Usage • Design About TextAttack

QData 2.2k Jan 03, 2023
Simple translation demo showcasing our headliner package.

Headliner Demo This is a demo showcasing our Headliner package. In particular, we trained a simple seq2seq model on an English-German dataset. We didn

Axel Springer News Media & Tech GmbH & Co. KG - Ideas Engineering 16 Nov 24, 2022
Library for fast text representation and classification.

fastText fastText is a library for efficient learning of word representations and sentence classification. Table of contents Resources Models Suppleme

Facebook Research 24.1k Jan 05, 2023
Checking spelling of form elements

Checking spelling of form elements. You can check the source files of external workflows/reports and configuration files

СКБ Контур (команда 1с) 15 Sep 12, 2022
EasyTransfer is designed to make the development of transfer learning in NLP applications easier.

EasyTransfer is designed to make the development of transfer learning in NLP applications easier. The literature has witnessed the success of applying

Alibaba 819 Jan 03, 2023
A Word Level Transformer layer based on PyTorch and 🤗 Transformers.

Transformer Embedder A Word Level Transformer layer based on PyTorch and 🤗 Transformers. How to use Install the library from PyPI: pip install transf

Riccardo Orlando 27 Nov 20, 2022
A BERT-based reverse-dictionary of Korean proverbs

Wisdomify A BERT-based reverse-dictionary of Korean proverbs. 김유빈 : 모델링 / 데이터 수집 / 프로젝트 설계 / back-end 김종윤 : 데이터 수집 / 프로젝트 설계 / front-end Quick Start C

Eu-Bin KIM 94 Dec 08, 2022
GCRC: A Gaokao Chinese Reading Comprehension dataset for interpretable Evaluation

GCRC GCRC: A New Challenging MRC Dataset from Gaokao Chinese for Explainable Eva

Yunxiao Zhao 5 Nov 04, 2022