A simple code for plotting figure, colorbar, and cropping with python

Overview

Python Plotting Tools

This repository provides a python code to generate figures (e.g., curves and barcharts) that can be used in the paper to show the results.

Dependencies: Python 3.+, numpy, and matplotlib.

Table of Contents

Preliminary

Layout of the diagram

The following shows a simple but complete diagram.

It contains the following common components. When creating a new diagram, we will modify these components to present our data:

  • Title
  • X-Label, xtick, and, xticklabel
  • Y-Label, ytick, and, yticklabel
  • Line, Marker, Legend
  • Grid

Sample configuration file

In this code, we define the appearance of the diagram with a configuration file. Then, we can plot the diagram by simply running:

python plot_diagram.py examples/demo/simple_plot.conf

The configuration file for the above simple plot is shown below with comments.

# CONFIGURATION FILE

# Comments start with '#'; 
# Parameters start with '!';
# If a parameter contains space, please replace the space with '&' for correct parsing
# For bool type, 1 is True else False

# Plot type: ploty|plotxy|plottwins
# ploty: The input data only contains Y values, the X values are generated as [0, ..., len(Y)]
# plotxy: The input data contains both X and Y values
# plottwins: The input data only contains Y values. Plot figure with two different Y-axis
! plot_type plotxy

# Figure format: pdf|jpg|png
! format pdf

# Canvas setting, fig size in inches
# https://matplotlib.org/devdocs/gallery/subplots_axes_and_figures/figure_size_units.html
! width 7
! height 3
! dpi 220

# Line and marker setting, different lines have different colors and marker shapes
# https://matplotlib.org/stable/api/_as_gen/matplotlib.pyplot.plot.html
# Example colors: 'r', 'k', 'b', 'g', 'y', 'm', 'c', 'tab:blue', 'tab:orange'
# Example markers: 'd', 'v', '1', '8', 'o', '^', '<', '>', 's', '*', 'p' 
! linewidth 1.5
! line_style -
! color tab:blue tab:orange tab:green
! markersize 4
! marker d v *

# Title and label setting 
# None indicates ignore; '&' is a placeholder for space;
# Eample font sizes: 'x-small', 'small', 'medium', 'large', 'x-large', 'xx-large', 'larger', 'smaller'
! title Simple&Plot
! title_font x-large
! xlabel x-Label
! xlabel_font x-large
! ylabel y-Label
! ylabel_font x-large

# Legend setting
# https://matplotlib.org/stable/api/_as_gen/matplotlib.pyplot.legend.html
# Example legend loc: 'best', 'upper left', 'upper right', 'lower left', 'lower right'
! legend Linear Quadratic Cubic
! legend_loc upper&left
! legend_font x-large
! legend_ncol 1

# Set grid on or off, 1 for on, 0 for off
! grid_on 1

# Data configuration
# Store the data values of a curve in a file, e.g., data.txt
# If have multiple curves, just list the file names one by one
! datafile data/linear.txt data/quadratic.txt data/cubic.txt

# Specify the maximum number of points, 
! max_point_num 1000

# set whether sort the data (None|ascend|descend), all x values should be the same for different curves
! sort_data None

Examples for Plotting Curves

Plot simple curves

The main difference between the following three configuration files is the number of curves.

# Figure at the below left
python plot_diagram.py examples/curve_simple_example/ploty_single_curve.conf

# Figure at the below middle
python plot_diagram.py examples/curve_simple_example/ploty_two_curves.conf

# Figure at the below right
python plot_diagram.py examples/curve_simple_example/ploty_multi_curves.conf

Plot dots

By adding "! draw_dot 1" in the .conf, we can plot dots instead of lines.

python plot_diagram.py examples/curve_simple_example/ploty_multi_dots.conf

Plot figure with customized xticklabel

We can manually set the xticklabel in the configuration file. e.g., adding "! xticklabel 2 4 9 18 30 36 45 60 90 180 $\infty$".

python plot_diagram.py examples/curve_custom_xtick/ploty_set_xtick.conf

We can also load the xticklabel from a file by setting the path, e.g., adding "! xtick_path data/merl_name.txt". We can rotate the xticklabel if they are too long by adding "! xtick_rot 90".

python plot_diagram.py examples/curve_custom_xtick/ploty_set_rotate_xtick.conf
# Remember that we can plot dots by setting draw_dot to 1 in the configuration file

Plot figure with two different Y-axes

By setting the plot_type to plottwins, we can draw the figure with two different Y-axes. But remember that this current implementation only supports two curves, one for each Y-axis.

python plot_diagram.py examples/curve_twin_y_axis/plottwins_yaxis.conf

Plot figure with customized legends

Note that this example is a hardcode for this specific legend pattern (i.e., two curves share the same legend).

python plot_diagram.py examples/curve_custom_legend/ploty_custom_legend.conf

Examples for Plot Functions

TODO.

Examples for Plotting Barchart

Layout of the barchart

The following shows a simple barchart.


It contains the following common components. When creating a new barchart, we will modify these components to present our data:

  • Title
  • X-Label, xtick, and, xticklabel
  • Y-Label, ytick, and, yticklabel
  • Bar, Text, Legend
  • Grid

The above barchart can be generated by running:

python plot_diagram.py examples/barchart_example1/simple_barchart.conf
Configuration file for the above barchart
# CONFIGURATION FILE

# Comments start with '#'; 
# Parameters start with '!';
# If a parameter contains space, please replace the space with '&' for correct parsing
# For bool type, 1 is True else False

# Plot type: ploty|plotxy|plottwins
# ploty: The input data only contains Y values, the X values are generated as [0, ..., len(Y)]
# plotxy: The input data contains both X and Y values
# plottwins: The input data only contains Y values. Plot figure with two different Y-axis
    ! plot_type plotbar

# Figure format: pdf|jpg|png
    ! format pdf

# Canvas setting, fig size in inches
# https://matplotlib.org/devdocs/gallery/subplots_axes_and_figures/figure_size_units.html
    ! width 5.5
    ! height 3
    ! dpi 220

# Data configuration
# Store the data values of the barchart in a single file, e.g., data.txt
# Each column corresponds to a group
# The number of row equals to the number of bars in a group 
    ! datafile data/bar_data_3group.txt

# IMPORTANT: Please remember to update the color, legend, xticklabel to match the input

# Bar setting
# Opacity sets the transparency of the bar, 0 indicates solid color
# Number of color and Opacity should equal to the bar numbers
    ! bar_width 0.3
    ! color tab:blue tab:red
    ! opacity 0.4 0.4
    ! y_min 0
    ! y_max 1

# xtick and ytick setting
    ! xticklabel vs.&Method1 vs.&Method2 vs.&Method3
# ! ytick 0 0.2 0.4 0.6 0.8 1.0
# ! yticklabel 0 20% 40% 60% 80% 100%

# Text setting
    ! put_text 1
    ! text_font 18
    ! percentage 0

# Title and label setting 
# None indicates ignore; '&' is a placeholder for space;
# Eample font sizes: 'x-small', 'small', 'medium', 'large', 'x-large', 'xx-large', 'larger', 'smaller'
    ! title Title
    ! title_font x-large
    ! xlabel x-Label
    ! xlabel_font x-large
    ! ylabel y-Label
    ! ylabel_font x-large

# Legend setting
# https://matplotlib.org/stable/api/_as_gen/matplotlib.pyplot.legend.html
# Example legend loc: 'best', 'upper left', 'upper right', 'lower left', 'lower right'
    ! legend Vote&Ours Vote&Others
    ! legend_loc upper&left
    ! legend_font xx-large
    ! legend_ncol 1
# You might need to tune the following bbox_to_anchor parameters to manually place the legends
    ! bbox_to_anchor -0.015 1.40

# Set grid on or off, 1 for on, 0 for off
    ! grid_on 1

Plot barchart with customized yticklabel

python plot_diagram.py examples/barchart_example1/simple_barchart_custom_ytick.conf

We set yticklabel in percentage, legend column number to 2, and show text in percentage, by adding the following to the config file.

! ytick 0 0.2 0.4 0.6 0.8 1.0
! yticklabel 0 20% 40% 60% 80% 100%
! legend_ncol 2
! percentage 1

Plot barchart with four bars in each group

python plot_diagram.py examples/barchart_example2/barchart_color.conf

Create Colorbar

We also provide a simple script to generate colorbar.

python img_tools/color_bar.py --colormap jet
python img_tools/color_bar.py --colormap jet --horizontal
python img_tools/color_bar.py --colormap viridis
python img_tools/color_bar.py --colormap viridis --horizontal

Crop Patches for Zoom-in Comparison

As it is very common to show zoom-in comparison between different methods in the paper, we provide a small image cropping scripts for this task.

By specifying the directory storing images, the desired box locations, and the colors, the following command can crop and highlight the boxes in the original images. However, you have to determine the locations of the boxes [left top bottom right] using other softwares.

python img_tools/image_cropper.py --in_dir examples/image_cropper_example/ -k '*.jpg' \
    --save_dir ROI --save_ext .jpg \
    --boxes 118 60 193 150 --boxes 371 452 431 521 --colors r g
# bash scripts/image_cropping.sh 


We can also add arrows onto the images to further highlight the differences.

python img_tools/image_cropper.py --in_dir examples/image_cropper_example/ --key '*.jpg' \
    --save_dir ROI_arrow --save_ext .jpg \
    --boxes 118 60 193 150 --boxes 371 452 431 521 --colors r g \
    --arrows 86 138 99 154 --arrows 502 412 488 393 --arrow_color r g


TODO: support selecting boxes in an interactive manner.

Owner
Guanying Chen
Guanying Chen
Tidy data structures, summaries, and visualisations for missing data

naniar naniar provides principled, tidy ways to summarise, visualise, and manipulate missing data with minimal deviations from the workflows in ggplot

Nicholas Tierney 611 Dec 22, 2022
A Python Library for Self Organizing Map (SOM)

SOMPY A Python Library for Self Organizing Map (SOM) As much as possible, the structure of SOM is similar to somtoolbox in Matlab. It has the followin

Vahid Moosavi 497 Dec 29, 2022
Seismic Waveform Inversion Toolbox-1.0

Seismic Waveform Inversion Toolbox (SWIT-1.0)

Haipeng Li 98 Dec 29, 2022
Splore - a simple graphical interface for scrolling through and exploring data sets of molecules

Scroll through and exPLORE molecule sets The splore framework aims to offer a si

3 Jun 18, 2022
Lime: Explaining the predictions of any machine learning classifier

lime This project is about explaining what machine learning classifiers (or models) are doing. At the moment, we support explaining individual predict

Marco Tulio Correia Ribeiro 10.3k Dec 29, 2022
Import, visualize, and analyze SpiderFoot OSINT data in Neo4j, a graph database

SpiderFoot Neo4j Tools Import, visualize, and analyze SpiderFoot OSINT data in Neo4j, a graph database Step 1: Installation NOTE: This installs the sf

Black Lantern Security 42 Dec 26, 2022
Python library that makes it easy for data scientists to create charts.

Chartify Chartify is a Python library that makes it easy for data scientists to create charts. Why use Chartify? Consistent input data format: Spend l

Spotify 3.2k Jan 01, 2023
649 Pokémon palettes as CSVs, with a Python lib to turn names/IDs into palettes, or MatPlotLib compatible ListedColormaps.

PokePalette 649 Pokémon, broken down into CSVs of their RGB colour palettes. Complete with a Python library to convert names or Pokédex IDs into eithe

11 Dec 05, 2022
A toolkit to generate MR sequence diagrams

mrsd: a toolkit to generate MR sequence diagrams mrsd is a Python toolkit to generate MR sequence diagrams, as shown below for the basic FLASH sequenc

Julien Lamy 3 Dec 25, 2021
Debugging, monitoring and visualization for Python Machine Learning and Data Science

Welcome to TensorWatch TensorWatch is a debugging and visualization tool designed for data science, deep learning and reinforcement learning from Micr

Microsoft 3.3k Dec 27, 2022
Frbmclust - Clusterize FRB profiles using hierarchical clustering, plot corresponding parameters distributions

frbmclust Getting Started Clusterize FRB profiles using hierarchical clustering,

3 May 06, 2022
A Python library for plotting hockey rinks with Matplotlib.

Hockey Rink A Python library for plotting hockey rinks with Matplotlib. Installation pip install hockey_rink Current Rinks The following shows the cus

24 Jan 02, 2023
A custom qq-plot for two sample data comparision

QQ-Plot 2 Sample Just a gist to include the custom code to draw a qq-plot in python when dealing with a "two sample problem". This means when u try to

1 Dec 20, 2021
Simple and lightweight Spotify Overlay written in Python.

Simple Spotify Overlay This is a simple yet powerful Spotify Overlay. About I have been looking for something like this ever since I got Spotify. I th

27 Sep 03, 2022
Simple Python interface for Graphviz

Simple Python interface for Graphviz

Sebastian Bank 1.3k Dec 26, 2022
Draw datasets from within Jupyter.

drawdata This small python app allows you to draw a dataset in a jupyter notebook. This should be very useful when teaching machine learning algorithm

vincent d warmerdam 505 Nov 27, 2022
✅ Today I Learn

Today I Learn EDA numpy_100ex numpy_0~10 airline_satisfaction_prediction BERT_naver_movie_classification NLP_prepare NLP_Tweet_Emotion_Recognition tex

Yeonghoo_Ahn 3 Dec 15, 2022
Blender addon that creates a temporary window of any type from the 3D View.

CreateTempWindow2.8 Blender addon that creates a temporary window of any type from the 3D View. Features Can the following window types: 3D View Graph

3 Nov 27, 2022
Streamlit dashboard examples - Twitter cashtags, StockTwits, WSB, Charts, SQL Pattern Scanner

streamlit-dashboards Streamlit dashboard examples - Twitter cashtags, StockTwits, WSB, Charts, SQL Pattern Scanner Tutorial Video https://ww

122 Dec 21, 2022