An interactive dashboard built with python that enables you to visualise how rent prices differ across Sweden.

Overview

sweden-rent-dashboard

An interactive dashboard built with python that enables you to visualise how rent prices differ across Sweden.

The dashboard/web-app generated from this project can be viewed by clicking here The dashboard was built to be highly interactive so please do feel free to interact with the figures, dialog buttons, sliders and text inputs. (Unfortunately, the web-app does not render well on mobile devices.)

Preview of the Dashboard Overview Page

SwedenDashBoard

Code and Resources Used

  • Python Version: 3.8
  • Packages Used: pandas, numpy, json, dash, plotly, BeautifulSoup, requests, urllib.request (Those that are required for hosting the web-app can be installed using: pip install -r requirements.txt after cloning the repo).
  • Statistical Data: Downloaded from Statistics Sweden. The median values were used instead of the means as the underlying distribution of each data set is unavailable.
  • Web scraping: Performed on various sites including wiki, Information Sverige and Open Street Map.
  • GeoJSON (Map) Data: Obtained from Open Street Map using their API. See section below for further details.

Repository Layout

Main folder

  • app.py: Used to generate the Plotly/Dash web-app. In order to run this you will need to have run all the below scripts in advance or use the files provided in the "assets" folder in this repo.

  • "get_kommun_county_info.py": This script web scrapes from both wiki and Information Sverige to:

    • Generate a dictionary that states what county ("län" in Swedish) each municipality ("kommun" in Swedish) belongs to.
    • Obtain a short bit of introductory text about each municipality.
    • Store the web address for each municipality's page on Information Sverige.
  • "prepare_rent_data.py": Takes the 4 Statistics Sweden excel files (these can be found in the "stats" folder) and cleans/reformats them. Outputs are saved as ".csv" files in the "assets" folder and are loaded into the web-app.

  • "get_geojson_data.py": This script first web scrapes relation numbers (like an i.d. number for a map file) for all counties ("län" in Swedish) and municipalities ("kommuner" in Swedish) in Sweden from Open Street Map. The relation numbers are then used to download GeoJSON files from the OSM database and merged to create maps of Sweden (with borders marked at both the county and municipality levels). The original map files generated from this process ("counties_map.json" and "kommuner_map.json") and they were then "simplified" (resolution decreased) using mapshaper to improve page loading times on the web-app.

Folder: stats

The four ".xlsx" files were obtained directly from Statistics Sweden and left unaltered. The file "sources.txt" provides additional information about how exactly these files were obtained.

Folder: assets

These are the resources read in and used by the Plotly/Dash web-app. These were all generated in advance using the scripts described in the main folder.

Issues/Comments/Questions

Please feel free to open an issue or pull request if you have any issues/comments/questions or notice something that could be improved.

Owner
Rory Crean
Postdoctoral Researcher in Computational Chemistry
Rory Crean
Color maps for POV-Ray v3.7 from the Plasma, Inferno, Magma and Viridis color maps in Python's Matplotlib

POV-Ray-color-maps Color maps for POV-Ray v3.7 from the Plasma, Inferno, Magma and Viridis color maps in Python's Matplotlib. The include file Color_M

Tor Olav Kristensen 1 Apr 05, 2022
Cryptocurrency Centralized Exchange Visualization

This is a simple one that uses Grafina to visualize cryptocurrency from the Bitkub exchange. This service will make a request to the Bitkub API from your wallet and save the response to Postgresql. G

Popboon Mahachanawong 1 Nov 24, 2021
Peloton Stats to Google Sheets with Data Visualization through Seaborn and Plotly

Peloton Stats to Google Sheets with Data Visualization through Seaborn and Plotly Problem: 2 peloton users were looking for a way to track their metri

9 Jul 22, 2022
Visualize large time-series data in plotly

plotly_resampler enables visualizing large sequential data by adding resampling functionality to Plotly figures. In this Plotly-Resampler demo over 11

PreDiCT.IDLab 604 Dec 28, 2022
Simple and lightweight Spotify Overlay written in Python.

Simple Spotify Overlay This is a simple yet powerful Spotify Overlay. About I have been looking for something like this ever since I got Spotify. I th

27 Sep 03, 2022
Machine learning beginner to Kaggle competitor in 30 days. Non-coders welcome. The program starts Monday, August 2, and lasts four weeks. It's designed for people who want to learn machine learning.

30-Days-of-ML-Kaggle 🔥 About the Hands On Program 💻 Machine learning beginner → Kaggle competitor in 30 days. Non-coders welcome The program starts

Roja Achary 145 Jan 01, 2023
Create 3d loss surface visualizations, with optimizer path. Issues welcome!

MLVTK A loss surface visualization tool Simple feed-forward network trained on chess data, using elu activation and Adam optimizer Simple feed-forward

7 Dec 21, 2022
Browse Dash docsets inside emacs

Helm Dash What's it This package uses Dash docsets inside emacs to browse documentation. Here's an article explaining the basic usage of it. It doesn'

504 Dec 15, 2022
Log visualizer for whirl-framework

Lumberjack Log visualizer for whirl-framework Установка pip install -r requirements.txt Как пользоваться python3 lumberjack.py -l путь до лога -o

Vladimir Malinovskii 2 Dec 19, 2022
Fastest Gephi's ForceAtlas2 graph layout algorithm implemented for Python and NetworkX

ForceAtlas2 for Python A port of Gephi's Force Atlas 2 layout algorithm to Python 2 and Python 3 (with a wrapper for NetworkX and igraph). This is the

Bhargav Chippada 227 Jan 05, 2023
CLAHE Contrast Limited Adaptive Histogram Equalization

A simple code to process images using contrast limited adaptive histogram equalization. Image processing is becoming a major part of data processig.

Happy N. Monday 4 May 18, 2022
Create a table with row explanations, column headers, using matplotlib

Create a table with row explanations, column headers, using matplotlib. Intended usage was a small table containing a custom heatmap.

4 Aug 14, 2022
HiPlot makes understanding high dimensional data easy

HiPlot - High dimensional Interactive Plotting HiPlot is a lightweight interactive visualization tool to help AI researchers discover correlations and

Facebook Research 2.4k Jan 04, 2023
trade bot connected to binance API/ websocket.,, include dashboard in plotly dash to visualize trades and balances

Crypto trade bot 1. What it is Trading bot connected to Binance API. This project made for fun. So ... Do not use to trade live before you have backte

G 3 Oct 07, 2022
Curvipy - The Python package for visualizing curves and linear transformations in a super simple way

Curvipy - The Python package for visualizing curves and linear transformations in a super simple way

Dylan Tintenfich 55 Dec 28, 2022
LabGraph is a a Python-first framework used to build sophisticated research systems with real-time streaming, graph API, and parallelism.

LabGraph is a a Python-first framework used to build sophisticated research systems with real-time streaming, graph API, and parallelism.

MLH Fellowship 7 Oct 05, 2022
Shaded 😎 quantile plots

shadyquant 😎 This python package allows you to quantile and plot lines where you have multiple samples, typically for visualizing uncertainty. Your d

Mehrad Ansari 13 Sep 29, 2022
An open-source tool for visual and modular block programing in python

PyFlow PyFlow is an open-source tool for modular visual programing in python ! Although for now the tool is in Beta and features are coming in bit by

1.1k Jan 06, 2023
Alternative layout visualizer for ZSA Moonlander keyboard

General info This is a keyboard layout visualizer for ZSA Moonlander keyboard (because I didn't find their Oryx or their training tool particularly us

10 Jul 19, 2022
A collection of 100 Deep Learning images and visualizations

A collection of Deep Learning images and visualizations. The project has been developed by the AI Summer team and currently contains almost 100 images.

AI Summer 65 Sep 12, 2022