HashDB is a community-sourced library of hashing algorithms used in malware.

Related tags

Algorithmshashdb
Overview

overview_hashdb

AWS Deploy Chat Support

HashDB

HashDB is a community-sourced library of hashing algorithms used in malware.

How To Use HashDB

HashDB can be used as a stand alone hashing library, but it also feeds the HashDB Lookup Service run by OALabs. This service allows analysts to reverse hashes and retrieve hashed API names and string values.

Stand Alone Module

HashDB can be cloned and used in your reverse engineering scripts like any standard Python module. Some example code follows.

>>> import hashdb
>>> hashdb.list_algorithms()
['crc32']
>>> hashdb.algorithms.crc32.hash(b'test')
3632233996

HashDB Lookup Service

OALabs run a free HashDB Lookup Service that can be used to query a hash table for any hash listed in the HashDb library. Included in the hash tables are the complete set of Windows APIs as well as a many common strings used in malware. You can even add your own strings!

HashDB IDA Plugin

The HashDB lookup service has an IDA Pro plugin that can be used to automate hash lookups directly from IDA! The client can be downloaded from GitHub here.

How To Add New Hashes

HashDB relies on community support to keep our hash library current! Our goal is to have contributors spend no more than five minutes adding a new hash, from first commit, to PR. To achieve this goal we offer the following streamlined process.

  1. Make sure the hash algorithm doesn’t already exist… we know that seems silly but just double check.

  2. Create a branch with a descriptive name.

  3. Add a new Python file to the /algorithms directory with the name of your hash algorithm. Try to use the official name of the algorithm, or if it is unique, use the name of the malware that it is unique to.

  4. Use the following template to setup your new hash algorithm. All fields are mandatory and case sensitive.

    #!/usr/bin/env python
    
    DESCRIPTION = "your hash description here"
    # Type can be either 'unsigned_int' (32bit) or 'unsigned_long' (64bit)
    TYPE = 'unsigned_int'
    # Test must match the exact has of the string 'ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789'
    TEST_1 = hash_of_string_ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789
    
    
    def hash(data):
        # your hash code here
  5. Double check your Python style, we use Flake8 on Python 3.9. You can try the following lint commands locally from the root of the git repository.

    pip install flake8
    flake8 ./algorithms --count --exit-zero --max-complexity=15 --max-line-length=127 --statistics --show-source
    
  6. Test your code locally using our test suite. Run the folling commands locally from the root of the git repository. Note that you must run pytest as a module rather than directly or it won't pick up our test directory.

    pip install pytest
    python -m pytest
    
  7. Issue a pull request — your new algorithm will be automatically queued for testing and if successful it will be merged.

That’s it! Not only will your new hash be available in the HashDB library but a new hash table will be generated for the HashDB Lookup Service and you can start reversing hashes immediately!

Rules For New Hashes

PRs with changes outside of the /algorithms directory are not part of our automated CI and will be subjected to extra scrutiny.

All hashes must have a valid description in the DESCRIPTION field.

All hashes must have a type of either unsigned_int or unsigned_long in the TYPE field. HashDB currently only accepts unsigned 32bit or 64bit hashes.

All hashes must have the hash of the string ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789 in the TEST_1 field.

All hashes must include a function hash(data) that accepts a byte string and returns a hash of the string.

Adding Custom API Hashes

Some hash algorithms hash the module name and API separately and combine the hashes to create a single module+API hash. An example of this is the standard Metasploit ROR13 hash. These algorithms will not work with the standard wordlist and require a custom wordlist that includes both the module name and API. To handle these we allow custom algorithms that will only return a valid hash for some words.

Adding a custom API hash requires the following additional components.

  1. The TEST_1 field must be set to 4294967294 (-1).

  2. The hash algorithm must return the value 4294967294 for all invalid hashes.

  3. An additional TEST_API_DATA_1 field must be added with an example word that is valid for the algorithm.

  4. An additional TEST_API_1 field must be added with the hash of the TEST_API_DATA_1 field.

Standing On The Shoulders of Giants

A big shout out to the FLARE team for their efforts with shellcode_hashes. Many years ago this project set the bar for quick and easy malware hash reversing and it’s still an extremely useful tool. So why duplicate it?

Frankly, it’s all about the wordlist and accessibility. We have seen a dramatic shift towards using hashes for all sorts of strings in malware now, and the old method of hashing all the Windows’ DLL exports just isn’t good enough. We wanted a solution that could continuously process millions of registry keys and values, filenames, and process names. And we wanted that data available via a REST API so that we could use it our automation workflows, not just our static analysis tools. That being said, we wouldn’t exist without shellcode_hashes, so credit where credit is due 🙌


Owner
OALabs
OALabs
Classic algorithms including Fizz Buzz, Bubble Sort, the Fibonacci Sequence, a Sudoku solver, and more.

Algorithms Classic algorithms including Fizz Buzz, Bubble Sort, the Fibonacci Sequence, a Sudoku solver, and more. Algorithm Complexity Time and Space

1 Jan 14, 2022
This repository is an individual project made at BME with the topic of self-driving car simulator and control algorithm.

BME individual project - NEAT based self-driving car This repository is an individual project made at BME with the topic of self-driving car simulator

NGO ANH TUAN 1 Dec 13, 2021
causal-learn: Causal Discovery for Python

causal-learn: Causal Discovery for Python Causal-learn is a python package for causal discovery that implements both classical and state-of-the-art ca

589 Dec 29, 2022
Distributed algorithms, reimplemented for fun and practice

Distributed Algorithms Playground for reimplementing and experimenting with algorithms for distributed computing. Usage Running the code for Ring-AllR

Mahan Tourkaman 1 Oct 16, 2022
A selection of a few algorithms used to sort or search an array

Sort and search algorithms This repository has some common search / sort algorithms written in python, I also included the pseudocode of each algorith

0 Apr 02, 2022
Algorithms and utilities for SAR sensors

WARNING: THIS CODE IS NOT READY FOR USE Sarsen Algorithms and utilities for SAR sensors Objectives Be faster and simpler than ESA SNAP and cloud nativ

B-Open 201 Dec 27, 2022
Implemented page rank program

Page Rank Implemented page rank program based on fact that a website is more important if it is linked to by other important websites using recursive

Vaibhaw 6 Aug 24, 2022
Algorithms and data structures for educational, demonstrational and experimental purposes.

Algorithms and Data Structures (ands) Introduction This project was created for personal use mostly while studying for an exam (starting in the month

50 Dec 06, 2022
A simple python application to visualize sorting algorithms.

Visualize sorting algorithms A simple python application to visualize sorting algorithms. Sort Algorithms Name Function Name O( ) Bubble Sort bubble_s

Duc Tran 3 Apr 01, 2022
PickMush - A mini study/project on boosting algorithm

PickMush A mini project implementing Boosting Author Shashwat Vaibhav What does it do? Classifies whether Mushroom is edible or is non-edible (binary

Shashwat Vaibahav 3 Nov 08, 2022
Wordle-solver - A program that solves a Wordle using a simple algorithm

Wordle Solver A program that solves a Wordle using a simple algorithm. To see it

Luc Bouchard 3 Feb 13, 2022
Distributed Grid Descent: an algorithm for hyperparameter tuning guided by Bayesian inference, designed to run on multiple processes and potentially many machines with no central point of control

Distributed Grid Descent: an algorithm for hyperparameter tuning guided by Bayesian inference, designed to run on multiple processes and potentially many machines with no central point of control.

Martin 1 Jan 01, 2022
Algorithm and Structured Programming course project for the first semester of the Internet Systems course at IFPB

Algorithm and Structured Programming course project for the first semester of the Internet Systems course at IFPB

Gabriel Macaúbas 3 May 21, 2022
Implements (high-dimenstional) clustering algorithm

Description Implements (high-dimenstional) clustering algorithm described in https://arxiv.org/pdf/1804.02624.pdf Dependencies python3 pytorch (=0.4)

Eric Elmoznino 5 Dec 27, 2022
So far implements A* will add more later

Pathfinding_Visualization Finds the shortest path between two nodes. The light blue path is the shortest path. The black nodes are barriers. Created i

Lukas DeLoach 1 Jan 18, 2022
A tictactoe where you never win, implemented using minimax algorithm

Unbeatable_TicTacToe A tictactoe where you never win, implemented using minimax algorithm Requirements Make sure you have the pygame module along with

Jessica Jolly 3 Jul 28, 2022
Genetic Algorithm for Robby Robot based on Complexity a Guided Tour by Melanie Mitchell

Robby Robot Genetic Algorithm A Genetic Algorithm based Robby the Robot in Chapter 9 of Melanie Mitchell's book Complexity: A Guided Tour Description

Matthew 2 Dec 01, 2022
Algorithms implemented in Python

Python Algorithms Library Laurent Luce Description The purpose of this library is to help you with common algorithms like: A* path finding. String Mat

Laurent Luce 264 Dec 06, 2022
A fast python implementation of the SimHash algorithm.

This Python package provides hashing algorithms for computing cohort ids of users based on their browsing history. As such, it may be used to compute cohort ids of users following Google's Federated

Hybrid Theory 19 Dec 15, 2022
Search algorithm implementations meant for teaching

Search-py A collection of search algorithms for teaching and experimenting. Non-adversarial Search There’s a heavy separation of concerns which leads

Dietrich Daroch 5 Mar 07, 2022