Controlling fireworks with micropython

Overview

Controlling-fireworks-with-micropython

How the code works


line 1-4

from machine import Pin, I2C
import ds1307
from time import localtime, mktime, sleep

We first import all the necessary libraries. Here is an explanation of the time.mktime() function from the Micropython docs. from Micropython docs:

time.mktime()

This is inverse function of localtime. It’s argument is a full 8-tuple which expresses a time as per localtime. It returns an integer which is the number of seconds since Jan 1, 2000.

The ds1307 is a library used to interface with RTC module. Find it here..


line 6-20

#rtc i2c pins
sda_pin = 26
scl_pin = 27

#pins for 7seg display
digits = (9, 8, 7, 6) #dig 1 2 3 4
segments = (11, 12, 16, 14, 17, 10, 13) # A B C D E F G, dp at Pin 15

#pins to activate relays
rel1 = 18
rel2 = 19

#rtc i2c setup
i2c = I2C(1, sda=Pin(sda_pin), scl=Pin(scl_pin))
ds = ds1307.DS1307(i2c)

We create variables for our circuit configuration. And then initiate the I2C and create a ds1307 class.


line 22-33

#segments values for displaying numbers  
num = {"-": (0,0,0,0,0,0,0),
       "0": (1,1,1,1,1,1,0),
       "1": (0,1,1,0,0,0,0),
       "2": (1,1,0,1,1,0,1),
       "3": (1,1,1,1,0,0,1),
       "4": (0,1,1,0,0,1,1),
       "5": (1,0,1,1,0,1,1),
       "6": (1,0,1,1,1,1,1),
       "7": (1,1,1,0,0,0,0),
       "8": (1,1,1,1,1,1,1),
       "9": (1,1,1,1,0,1,1)}

The tuples store the states (0=OFF, 1=ON) of the LED segments in order order to display each digit. NB: "-" is a blank character which keeps all segments off.


line 35-48

Pin(rel1, mode=Pin.OUT, value=0)
Pin(rel2, mode=Pin.OUT, value=0)

def init():
    #initiate digit pins at HIGH
    for digit in digits:
        Pin(digit, Pin.OUT)
        Pin(digit).on()
    
    #initiate segment pins at LOW
    for seg in segments:
        Pin(digit, Pin.OUT)
        Pin(digit).off()
init()

Relay pins begin as OFF. The init() function takes the display off. For the display to be off, the digit pins should be ON while the segments should be GND.


line 50

deadline = (2022, 1, 2, 17, 41, 0, 0, 0)  #time to countdown to

This value can be changed to a desired date and/or time. It is the target time for the countdown, and it is the 8-tuple time format used in micropython:

(year, month, mday, hour, minute, second, weekday, yearday) ... The format of the entries in the 8-tuple are:

year includes the century (for example 2014).

month is 1-12

mday is 1-31

hour is 0-23

minute is 0-59

second is 0-59

weekday is 0-6 for Mon-Sun

yearday is 1-366


The subsequent code runs inside of a while True loop


line 54

current = localtime() #current = ds.datetime() for RTC

#time difference between the two events/moments in seconds
diff = mktime(deadline) - mktime(current)

First of all, we get the current time either from port when the board is connected, time.localtime(), or from the RTC, ds.datetime().

When we pass the deadline or the current variables into local.mktime(), we get the time, in seconds since the epoch (info about local.mktime() at the top) Mathemetically, by subtracting time-since-epoch of both deadline and current, we get the time difference between deadline and current, hence time to go until its the deadline.


line 59-62

#convert seconds to hours, minutes, seconds
hours, minutes = divmod(diff,3600)
minutes, seconds = divmod(minutes,60)
seconds = int(seconds)

Since the time is in seconds, we have to convert it to total Hours, Minutes, and Seconds. To that, we have to

  1. find the total hours in `diff` by dividing the value by the number seconds in an hour, 3600 seconds. The remainder from this division will give total minutes then seconds
  2. dividing on the remainder with 60 (number of seconds in a minute) gives total minutes. The remainder from this division is the seconds

So how divmod works is that you pass two parameters, the dividend followed by the divisor and the functions returns a tuple: first item is the quotient then the second item is the remainder. Divisor-Dividend-Quotient explained

In this line seconds = int(seconds), we take only the integer of the previous seconds variable, discarding everything behind the decimal point.


line 63-67

#choosing between seconds countdown and HH:MM countdown
if (hours == 0) and (minutes <=1):
    s = f"--{seconds:02d}" 
else:
    s = f"{hours:02d}{minutes:02d}" 

Before the countdown time goes below a minute, the time is displayed as hours and minutes (HHMM), and when it is under a minute, we display seconds (--SS).


line 69-74

for digit in range(4):
    for seg in range(7):
        Pin(segments[seg], mode=Pin.OUT, value=num[str(s[digit])][seg])
    Pin(digits[digit], mode=Pin.OUT, value=0)
    sleep(0.001)
    Pin(digits[digit], mode=Pin.OUT, value=1)
for digit in range(4):
    for seg in range(7):

These loop through every segment of every digit.

Let us break this Pin(segments[seg], mode=Pin.OUT, value=num[str(s[digit])][seg]) down:

  1. `segments[seg]`- The pin number of the segment to be addressed is selected from the `segments` array by using the current counter value as the index.
  2. `mode=Pin.OUT`- The pin is to be an output
  3. `value=num[str(s[digit])][seg]`
      Example, let me explain it with our value of `s` representing 2 hours 30 min: `s = "0230"`
    • `str(s[digit])`-from `s`, we set the position of the digit to handle, indexed by `digit` counter from outer loop. We convert this value to string.
    • `>>> On first run of the loop we will have "0"`
    • `num[str(s[digit])]`-the string we found, we use it as a key to look up the `num` dictionary in order to get the tuple with LED state valus that represent different digits.
    • `>>> For a key of "0", we have the value (1,1,1,1,1,1,0)`
    • `num[str(s[digit])][seg]`-we index the tuple with the current value of seg counter. And the tuple item we get at whatever index will be either 1(ON) or 0(OFF) to define the state of the respective segment.
    • `>>>If seg is equal to 3, then we get a 1 which we assign to the value parameter to turn the segment ON.`
    the loop runs 7 times to appropriately, turn on the 7 segments that make up a digit.

In this line Pin(digits[digit], mode=Pin.OUT, value=0), digits[digit] indexes digits tuple to get the pin number of the digit to control. We set the pin to OFF (or GND) in order to bring the digit on. So these 3 lines Pin(digits[digit], mode=Pin.OUT, value=0), ``sleep(0.001), and Pin(digits[digit], mode=Pin.OUT, value=1)` control the display to show a single digit at a time, and then bring it off before showing another digit individually. The digits on the display appear as if they are all displayed simaltenously instead of individually. This is because thecycle of displaying the digits individually occurs very fast, it runs over each digit in 1 millisecond or 0.001 seconds.


line 76-80

if s == "--00":
    Pin(rel1, mode=Pin.OUT, value=1)
    sleep(2)
    Pin(rel2, mode=Pin.OUT, value=1)
    quit

if we have reached the end of our countdown, i.e time left to deadline is 0, or s is "--00", we turn ON the pins where relays are connected. This sets alight the fireworks. We then quit the whileloop.


line 81 We run the init() function to turn the display off.


To do

  • Documet code
  • Document circuit
  • Explain how the display works
  • Explain the maling of electronic igniters
Owner
Montso Mokake
Python: Micropython, Microcontrollers, MachineLearning.
Montso Mokake
Run this code to blink your ThinkPad LED with a hidden mysterious Morse code! ;)

TMorse Run this code to blink your ThinkPad LED with a hidden mysterious Morse code! ;) Compatible with python3.9+. No third-party library is required

Mahyar 2 Jul 11, 2022
A DiY holiday project to demonstrate how you can send data from adafruitIO cloud to a balena edge device

holiday-star balena ❤️ adafruitIO Introduction A DiY holiday project to demonstrate how you can send data from adafruitIO cloud to a balena edge devic

Ayan Pahwa 3 Dec 20, 2021
ESP32 micropython implementation of Art-Net client

E_uArtnet ESP32 micropython implementation of Art-Net client Instalation Use thonny Open the root folder in thonny and upload the Empire folder like i

2 Dec 07, 2021
Custom component for interacting with Octopus Energy

Home Assistant Octopus Energy ** WARNING: This component is currently a work in progress ** Custom component built from the ground up to bring your Oc

David Kendall 116 Jan 02, 2023
An alternative to Demise-Assistant-Batch made entirely in Python for more capabilities.

Demise-Assistant-Python An alternative to Demise-Assistant-Batch made entirely in Python for more capabilities. IMPORTANT NOTE Demise-Assistant-Batch

SkelOrganisation 1 Nov 24, 2021
FHEM Connector for FHT Heating devices

home-assistant-fht from: https://github.com/Rsclub22 FHEM Connector for FHT Heating devices (connected via FHEM) Requires FHEM to work You can find FH

5 Dec 01, 2022
Homeautomation system created with Raspberry Pi 3 and Firebase.

Homeautomation System - Raspberry Pi 3 Desenvolvido com Python, Flask com AJAX e Firebase permite o controle local e remoto Itens necessários Raspberr

Joselino Santos 0 Mar 09, 2022
Example for Calculating Robot Dynamics Using Pinocchio Library

A Example for Calculating Robot Dynamics Using Pinocchio Library Developed by: Xinyang Tian. Platform: Linux + Pinocchio. In this work, i use Pinocchi

Rot_Tianers 33 Dec 28, 2022
Jarvis: a personal assistant which can help you to manage your system

Jarvis Jarvis is personal AI based assistant which can help you to manage stuff in your computer. This is demo but I decided to make it more better so

2 Jun 02, 2022
Python script for printing to the Hanshow price-tag

This repository contains Python code for talking to the ATC_TLSR_Paper open-source firmware for the Hanshow e-paper pricetag. Installation # Clone the

12 Oct 06, 2022
Hook and simulate global mouse events in pure Python

mouse Take full control of your mouse with this small Python library. Hook global events, register hotkeys, simulate mouse movement and clicks, and mu

BoppreH 722 Dec 31, 2022
This is a python script to grab data from Zyxel NSA310 NAS and display in Home Asisstant as sensors.

Home-Assistant Python Scripts Python Scripts for Home-Assistant (http://www.home-assistant.io) Zyxel-NSA310-Home-Assistant Monitoring This is a python

6 Oct 31, 2022
Smart EQ connect - Custom Integration for Home Assistant

Smart EQ Connect platform as a Custom Component for Home Assistant.

Rene Nulsch 2 Jan 04, 2022
ESP32 recording button presses, and serving webpage that graphs the numbers over time.

ESP32-IoT-button-graph-test ESP32 recording button presses, and serving webpage via webSockets in order to graph the responses. The objective was to t

f-caro 1 Nov 30, 2021
Python module for controlling Broadlink RM2/3 (Pro) remote controls, A1 sensor platforms and SP2/3 smartplugs

Python module for controlling Broadlink RM2/3 (Pro) remote controls, A1 sensor platforms and SP2/3 smartplugs

Matthew Garrett 1.2k Jan 04, 2023
The PicoEMP is a low-cost Electromagnetic Fault Injection (EMFI) tool,

ChipSHOUTER-PicoEMP The PicoEMP is a low-cost Electromagnetic Fault Injection (EMFI) tool, designed specifically for self-study and hobbiest research.

NewAE Technology Inc. 312 Jan 07, 2023
Robo Arm :: Rigging is a rigging addon for Blender that helps animating industrial robotic arms.

Robo Arm :: Rigging Robo Arm :: Rigging is a rigging addon for Blender that helps animating industrial robotic arms. It construct serial links(a kind

2 Nov 18, 2021
View your medication from Medisafe Cloud in Home Assistant

Medisafe View your medication from Medisafe Cloud in Home Assistant. This integration adds sensors for today's upcoming, taken, skipped, and missed do

Sam Steele 12 Dec 27, 2022
Keystroke logging, often referred to as keylogging or keyboard capturing

Keystroke logging, often referred to as keylogging or keyboard capturing, is the action of recording the keys struck on a keyboard, typically covertly, so that a person using the keyboard is unaware

Bhumika R 2 Jan 11, 2022
LT-OCF: Learnable-Time ODE-based Collaborative Filtering, CIKM'21

LT-OCF: Learnable-Time ODE-based Collaborative Filtering Our proposed LT-OCF Our proposed dual co-evolving ODE Setup Python environment for LT-OCF Ins

Jeongwhan Choi 15 Dec 28, 2022