Using a raspberry pi, we listen to the coffee machine and count the number of coffee consumption

Overview

maintained by dataroots

Fresh-Coffee-Listener

A typical datarootsian consumes high-quality fresh coffee in their office environment. The board of dataroots had a very critical decision by the end of 2021-Q2 regarding coffee consumption. From now on, the total number of coffee consumption stats have to be audited live via listening to the coffee grinder sound in Raspberry Pi, because why not?

Overall flow to collect coffee machine stats

  1. Relocate the Raspberry Pi microphone just next to the coffee machine
  2. Listen and record environment sound at every 0.7 seconds
  3. Compare the recorded environment sound with the original coffee grinder sound and measure the Euclidean distance
  4. If the distance is less than a threshold it means that the coffee machine has been started and a datarootsian is grabbing a coffee
  5. Connect to DB and send timestamp, office name, and serving type to the DB in case an event is detected ( E.g. 2021-08-04 18:03:57, Leuven, coffee )

Raspberry Pi Setup

  1. Hardware: Raspberry Pi 3b
  2. Microphone: External USB microphone (doesn't have to be a high-quality one). We also bought a microphone with an audio jack but apparently, the Raspberry Pi audio jack doesn't have an input. So, don't do the same mistake and just go for the USB one :)
  3. OS: Raspbian OS
  4. Python Version: Python 3.7.3. We used the default Python3 since we don't have any other python projects in the same Raspberry Pi. You may also create a virtual environment.

Detecting the Coffee Machine Sound

  1. In the sounds folder, there is a coffee-sound.m4a file, which is the recording of the coffee machine grinding sound for 1 sec. You need to replace this recording with your coffee machine recording. It is very important to note that record the coffee machine sound with the external microphone that you will use in Raspberry Pi to have a much better performance.
  2. When we run detect_sound.py, it first reads the coffee-sound.m4a file and extracts its MFCC features. By default, it extracts 20 MFCC features. Let's call these features original sound features
  3. The external microphone starts listening to the environment for about 0.7 seconds with a 44100 sample rate. Note that the 44100 sample rate is quite overkilling but Raspberry Pi doesn't support lower sample rates out of the box. To make it simple we prefer to use a 44100 sample rate.
  4. After each record, we also extract 20 MFCC features and compute the Euclidean Distance between the original sound features and recorded sound features.
  5. We append the Euclidean Distance to a python deque object having size 3.
  6. If the maximum distance in this deque is less than self.DIST_THRESHOLD = 85, then it means that there is a coffee machine usage attempt. Feel free to play with this threshold based on your requirements. You can simply comment out line 66 of detect_sound.py to print the deque object and try to select the best threshold. We prefer to check 3 events (i.e having deque size=3) subsequently to make it more resilient to similar sounds.
  7. Go back to step 3, if the elapsed time is < 12 hours. (Assuming that the code will run at 7 AM and ends at 7 PM since no one will be at the office after 7 PM)
  8. Exit

Scheduling the coffee listening job

We use a systemd service and timer to schedule the running of detect_sound.py. Please check coffee_machine_service.service and coffee_machine_service.timer files. This timer is enabled in the makefile. It means that even if you reboot your machine, the app will still work.

coffee_machine_service.service

In this file, you need to set the correct USER and WorkingDirectory. In our case, our settings are;

User=pi
WorkingDirectory= /home/pi/coffee-machine-monitoring

To make the app robust, we set Restart=on-failure. So, the service will restart if something goes wrong in the app. (E.g power outage, someone plugs out the microphone and plug in again, etc.). This service will trigger make run the command that we will cover in the following sections.

coffee_machine_service.timer

The purpose of this file is to schedule the starting time of the app. As you see in;

OnCalendar=Mon..Fri 07:00

It means that the app will work every weekday at 7 AM. Each run will take 7 hours. So, the app will complete listening at 7 PM.

Setup a PostgreSQL Database

You can set up a PostgreSQL database at any remote platform like an on-prem server, cloud, etc. It is not advised to install it to Raspberry Pi.

  1. Install and setup a PostgreSQL server by following the official documentation

  2. Create a database by typing the following command to the PostgreSQL console and replace DB_NAME with your database name;

    createdb DB_NAME
    

    If you got an error, check here

  3. Create a table by running the following query in your PostgreSQL console by replacing DB_NAME and TABLE_NAME with your own preference;

    CREATE TABLE DB_NAME.TABLE_NAME (
        "timestamp" timestamp(0) NOT NULL,
        office varchar NOT NULL,
        serving_type varchar NOT NULL
    );
    
  4. Create a user, password and give read/write access by replacing DB_USER, DB_PASSWORD, DB_NAME and DB_TABLE

    create user DB_USER with password 'DB_PASSWORD';
    grant select, insert, update on DB_NAME.DB_TABLE to DB_USER;
    

Deploying Fresh-Coffee-Listener app

  1. Installing dependencies: If you are using an ARM-based device like Raspberry-Pi run

    make install-arm

    For other devices having X84 architecture, you can simply run

    make install
  2. Set Variables in makefile

    • COFFEE_AUDIO_PATH: The absolute path of the original coffee machine sound (E.g. /home/pi/coffee-machine-monitoring/sounds/coffee-sound.m4a)
    • SD_DEFAULT_DEVICE: It is an integer value represents the sounddevice input device number. To find your external device number, run python3 -m sounddevice and you will see something like below;
         0 bcm2835 HDMI 1: - (hw:0,0), ALSA (0 in, 8 out)
         1 bcm2835 Headphones: - (hw:1,0), ALSA (0 in, 8 out)
         2 USB PnP Sound Device: Audio (hw:2,0), ALSA (1 in, 0 out)
         3 sysdefault, ALSA (0 in, 128 out)
         4 lavrate, ALSA (0 in, 128 out)
         5 samplerate, ALSA (0 in, 128 out)
         6 speexrate, ALSA (0 in, 128 out)
         7 pulse, ALSA (32 in, 32 out)
         8 upmix, ALSA (0 in, 8 out)
         9 vdownmix, ALSA (0 in, 6 out)
        10 dmix, ALSA (0 in, 2 out)
      * 11 default, ALSA (32 in, 32 out)

    It means that our default device is 2 since the name of the external device is USB PnP Sound Device. So, we will set it as SD_DEFAULT_DEVICE=2 in our case.

    • OFFICE_NAME: it's a string value like Leuven office
    • DB_USER: Your PostgreSQL database username
    • DB_PASSWORD: the password of the specified user
    • DB_HOST: The host of the database
    • DB_PORT: Port number of the database
    • DB_NAME: Name of the database
    • DB_TABLE: Name of the table
  3. Sanity check: Run make run to see if the app works as expected. You can also have a coffee to test whether it captures the coffee machine sound.

  4. Enabling systemd commands to schedule jobs: After configuring coffee_machine_service.service and coffee_machine_service.timer based on your preferences, as shown above, run to fully deploy the app;

    make run-systemctl
  5. Check the coffee_machine.logs file under the project root directory, if the app works as expected

  6. Check service and timer status with the following commands

    systemctl status coffee_machine_service.service

    and

    systemctl status coffee_machine_service.timer

Having Questions / Improvements ?

Feel free to create an issue and we will do our best to help your coffee machine as well :)

Owner
dataroots
Supporting your data driven strategy.
dataroots
a weather application for the raspberry pi and the Pimorioni Inky pHAT.

raspi-weather a weather application for the raspberry pi and the Inky pHAT

Derek Caelin 59 Oct 24, 2022
OpenStickFirmware is open source software designed to handle any and all tasks required in a custom Fight Stick

OpenStickFirmware is open source software designed to handle any and all tasks required in a custom Fight Stick. It can handle being the brains of your entire stick, or just handling the bells and wh

Sleep Unit 23 Nov 24, 2022
Repo for the esp32s2 version of the Wi-Fi Nugget

Repo for the esp32s2 version of the Wi-Fi Nugget

HakCat 30 Nov 05, 2022
Python implementation of ZMP Preview Control approach for biped robot control.

ZMP Preview Control This is the Python implementation of ZMP Preview Control app

Chaobin 24 Dec 19, 2022
Jarvis: a personal assistant which can help you to manage your system

Jarvis Jarvis is personal AI based assistant which can help you to manage stuff in your computer. This is demo but I decided to make it more better so

2 Jun 02, 2022
Mycodo is open source software for the Raspberry Pi that couples inputs and outputs in interesting ways to sense and manipulate the environment.

Mycodo Environmental Regulation System Latest version: 8.12.9 Mycodo is open source software for the Raspberry Pi that couples inputs and outputs in i

Kyle Gabriel 2.3k Dec 29, 2022
A module for cross-platform control of the mouse and keyboard in python that is simple to install and use.

PyUserInput PyUserInput is a group project so we've moved the project over to a group organization: https://github.com/PyUserInput/PyUserInput . That

Paul Barton 1k Dec 27, 2022
My self-hosting infrastructure, fully automated from empty disk to operating services

Khue's Homelab Current status: ALPHA This project utilizes Infrastructure as Code to automate provisioning, operating, and updating self-hosted servic

Khue Doan 6.4k Dec 31, 2022
Raspberry Pi Pico support for VS Code

Pico-Go VS Code Extension Pico-Go provides code auto-completion and allows you to communicate with your Raspberry Pi Pico board using the built-in REP

Chris Wood 114 Dec 28, 2022
Volta: A Virtual Assistant which increases your productivity with time as you use it…

Volta Official Documentation Overview & Purpose Volta: A Virtual Assistant which increases your productivity with time as you use it… Volta, developed

Abeer Joshi 1 Jan 14, 2022
Python library to manipulate Ingenico mobile payment device like iCT220 or iWL220 equipped with Telium Manager. RS232/USB.

Python library to manipulate Ingenico mobile payment device like iCT220 or iWL220 equipped with Telium Manager. RS232/USB.

TAHRI Ahmed R. 72 Dec 24, 2022
Using a GNSS module (Beidou + GPS) and the mapquest static map API

Using a GNSS module (Beidou + GPS) and the mapquest static map API

Kongduino 1 Nov 04, 2021
A dashboard for Raspberry Pi to display environmental weather data, rain radar, weather forecast, etc. written in Python

Weather Clock for Raspberry PI This project is a dashboard for Raspberry Pi to display environmental weather data, rain radar, weather forecast, etc.

Markus Geiger 1 May 01, 2022
A global contest to grow and monitor your own food with Raspberry Pi

growlab A global contest to grow and monitor your own food with Raspberry Pi A capture from phototimer of my seed tray with a wide-angle camera positi

Alex Ellis 442 Dec 23, 2022
This is a python script to grab data from Zyxel NSA310 NAS and display in Home Asisstant as sensors.

Home-Assistant Python Scripts Python Scripts for Home-Assistant (http://www.home-assistant.io) Zyxel-NSA310-Home-Assistant Monitoring This is a python

6 Oct 31, 2022
Python code written to utilize the Korlan usb2can hardware to send and receive data over the can-bus on a 2008 Nissan 350z

nissan_ecu_hacking Python code written to utilize the Korlan usb2can hardware to send and receive data over the can-bus on a 2008 Nissan 350z My goal

Liam Goss 11 Sep 24, 2022
Imbalaced Classification and Robust Semantic Segmentation

Imbalaced Classification and Robust Semantic Segmentation This repo implements two algoritms. The imbalance clibration (IC) algorithm for image classi

24 Jul 23, 2022
ENC28J60 Ethernet chip driver for MicroPython (RP2)

micropy-ENC28J60 ENC28J60 Ethernet chip driver for MicroPython v1.17 (RP2) Rationale ENC28J60 is a popular and cheap module for DIY projects. At the m

11 Nov 16, 2022
Connect a TeslaMate instance to Home Assistant, using MQTT

TeslaBuddy Connect a TeslaMate instance to Home Assistant, using MQTT. It allows basic control of your Tesla vehicle via Home Assistant (currently, ju

4 May 23, 2022
Python module for the qwiic serial control motor driver

Qwiic_SCMD_Py Python module for the qwiic motor driver This python package is a port of the existing SparkFun Serial Controlled Motor Driver Arduino L

SparkFun Electronics 6 Dec 06, 2022