AERO 421: Spacecraft Attitude, Dynamics, and Control Final Project.

Overview

AERO - 421 Final Project Redevelopment

Spacecraft Attitude, Dynamics, and Control: Simulation to determine and control a satellite's attitude in LEO.

Background

AERO-421, or Spacecraft Attitude, Dynamics, and Controls, is a class taught at the California Polytechnic State University at San Luis Obispo (Cal Poly SLO) which serves as an...

"Introduction to spacecraft attitude dynamics and control... [and] fundamentals of guidance and navigation systems... [with emphasis in] analysis and design of control systems for aerospace vehicles." - Cal Poly Aerospace Engineering Course Catalog

The final project in the course was to develop a simulation to determine a satellite's attitude in Low Earth Orbit (LEO), consider and model detumbling from a launch vehicle, consider and model disturbances due to external forces i.e., Solar Radiation Pressure (SRP), and to consider and model control via onboard reaction wheels.

More information regarding the 6 different parts can be found below.

The initial project was developed in MATLAB, however, the project will be completely redeveloped in Python to showcase controls and software development skillsets.

Part 0: Context and Given Data

The project will explore modeling and simulation of the various stages of a spacecraft mission, specifically simulating the attitude dynamics from initial spacecraft deployment to operation. In this simulation, the spacecraft is an Earth observing satellite and an attitude determination and control system must be designed using reaction wheels to ensure the spacecraft maintains pointing nadir.

Orbital Data:

  • h (angular momentum) = 53335.2 km^2/s
  • e (eccentricity) = 0
  • Ω (Right Ascension of Ascending Node) = 0 deg
  • i (inclination) = 98.43 deg
  • ω (Argument of Perigee) = 0 deg
  • θ (True Anomaly) = 0 deg
  • ϵ-LVLH (Initial Quaternion relating the body to the LVLH frame) = [0, 0, 0]; η = 1

Detumble Phase:

  • Spacecraft is a square box with 2 meters on each edge with total mass of 640 kg
  • Initial Angular Velocity of [-0.05, 0.03, 0.2] rad/s relating the body to the ECI frame

Normal Operations:

  • Spacecraft bus is a 2 meter cube with mass of 500 kg. The center of mass of the spacecraft is located at the geometric center of the bus.
  • A rectangular sensor is attached to the face pointing towards the Earth (+Z-axis) and is 1 meter long and 0.25 meters square. The sensor has a mass of 100 kg.
  • Two solar panels are deployed along the +/- Y-axis and are constrained to rotate about the +/- Y-axis. The solar panels are 3 meters long (in the Y-axis), 2 meters wide, and 0.05 meters thick. Each panel has a mass of 20 kg and the center of mass is located at the geometric center of the panel. The solar panels do not rotate relative to the spacecraft bus.
  • Assume all spacecraft components have uniform density with centers of mass located at the geometric centers of each component
  • Magnetically, the spacecraft residual magnetic dipole moment can be modeled as pointing in the -Z direction with magnitude 0.5 A-m^2
  • See the figure below for the spacecraft schematic
  • Because the thrusters are not actually fully-modulated thrusters, the spacecraft will have a residual angular velocity of [0.001, -0.001, 0.002] rad/s relating the body to the ECI frame after the detumble phase.
  • During operation the spacecraft is required to point at the target on the ground to within 0.001 degrees 3-sigma using the reaction wheels used in the reaction wheels part.

Spacecraft Schematic

Part 1: Mass Properties

Determine the mass and inertial properties of the spacecraft for both the detumble and the normal operations phases.

Outputs:

  • Total mass of the spacecraft
  • Center of mass relative to the spacecraft bus center of mass. The body frame will be located at the center of mass of the whole spacecraft
  • Intertia matrix of the whole spacecraft about the center of mass of the spacecraft

Part 2: Torque Free Motion

Model the torque free orbital and attitude motion of the spacecraft

Outputs: Plots for...

  • Euler angles and quaternions relating body to ECI reference frames
  • Angular velocity of the spacecraft in body components for one orbit of the normal operations phase

Part 3: Detumble

Simulate the motion of the satellite during the detumble phase. Assume fully modulated thrusters and use direct velocity feedback

Outputs: Plots for...

  • Euler angles and quaternions relating body to ECI reference frames
  • Angular velocity of the spacecraft in body components for the detumble phase
  • Torque components in the body frame

Part 4: Disturbance Simulation

Add the four disturbance models to the simulation:

  • Atmospheric Drag
  • Solar Pressure
  • Gravity Gradient
  • Earth Magnetic Field

Use the following model for the atmospheric density. Notice that h is the height above the Earth's surface in kilometers where R_Earth equals 6378km

Disturbance Model

Consider the simulation epoch to be March 20, 2021. Disregard any variations of the ECI representation of the sunlight direction during the simulation.

Outputs: Plots for...

  • Euler angles and quaternions relating the body to the ECI reference frame
  • Euler angles and quaternions relating the body to the LVLH reference frame
  • Angular velocity of the spacecraft relative to the ECI frame expressed in body components
  • Angular velocity of the spacecraft relative to the LVLH frame expressed in body components
  • Torque components for atmospheric drag, solar radiation pressure, gravity gradient, and earth magnetic field

Part 5: Reaction Wheel Control

Determine the control gains for a full state feedback 3-axis reaction wheel control system. Use the requirements of ζ = 0.65 and t_s = 30 sec

The positions of the 3 reaction wheels are [1, 0, 0], [0, 1, 0], and [0, 0, 1]. Each reaction wheel can be modeled as a simple cylinder with radius of 0.3 m and a height of 0.02 m

Outputs: Plots for...

  • Euler angles and quaternions relating the body to ECI reference frame
  • Euler angles and quaternions relating the body to LVLH reference frame
  • Angular velocity of the spacecraft relative to the ECI reference frame expressed in body components
  • Angular velocity of the spacecraft relative to LVLH frame expressed in body components
  • Commanded moment from the determined control law
  • Wheel speed of each reaction wheel

Part 6: Visualization

Determine and animate the quanterions of the spacecraft, from ECI to body frame, for the duration of 1-5 revolutions.

Output:

  • Table of quaternion and time data
  • Video or other animation file to show the revolution of the spacecraft
Owner
Gagandeep Thapar
- (he/they) - 4th year Aerospace Engineering (w/ CS Minor) at Cal Poly SLO - Interested in Launch Vehicle and Spacecraft Controls and Avionics
Gagandeep Thapar
LUNA: a USB multitool & nMigen library

LUNA is a full toolkit for working with USB using FPGA technology; and provides hardware, gateware, and software to enable USB applications.

Great Scott Gadgets 750 Dec 28, 2022
Estimation of whether or not the persons given information will have diabetes.

Diabetes Business Problem : It is desired to develop a machine learning model that can predict whether people have diabetes when their characteristics

Barış TOKATLIOĞLU 0 Jan 20, 2022
Tools and documentation to aid in modifying the ADI ADALM Pluto firmware

Pluto firmware modifications This repository contains tools and documentation to aid in modifying the ADI ADALM Pluto firmware. Extraction of the Plut

Daniel Estévez 28 Dec 21, 2022
Python code written to utilize the Korlan usb2can hardware to send and receive data over the can-bus on a 2008 Nissan 350z

nissan_ecu_hacking Python code written to utilize the Korlan usb2can hardware to send and receive data over the can-bus on a 2008 Nissan 350z My goal

Liam Goss 11 Sep 24, 2022
Pylorawan is a Micropython wrapper for lorawan devices from RAK Wireless.

pylorawan Pylorawan is a Micropython wrapper for lorawan devices from RAK Wireless. Tested on a Raspberry PI Pico with a RAK4200(H) Evaluation Board (

Peter Houghton 3 Nov 04, 2022
A custom mechanical keyboard inspired by the CFTKB Mysterium

Env-KB A custom mechanical keyboard inspired by the CFTKB Mysterium Build Guide and Parts List What is to do? Right now for the first 5 PCBs I have, i

EnviousData 203 Jan 04, 2023
Micro Displays for Raspberry Pi

micro-displays Micro Displays for Raspberry Pi Why? I'm super bored in lockdown. Add a Raspberry Pi 400 and a few tiny displays... The top half of the

ig 291 Jul 06, 2022
Alternative firmware for ESP8266 with easy configuration using webUI, OTA updates, automation using timers or rules, expandability and entirely local control over MQTT, HTTP, Serial or KNX. Full documentation at

Alternative firmware for ESP8266/ESP32 based devices with easy configuration using webUI, OTA updates, automation using timers or rules, expandability

Theo Arends 59 Dec 26, 2022
Home Assistant custom integration for e-distribución

e-Distribución is an energy distribution company that covers most of South Spain area. If you live in this area, you probably are able to register into their website to get some information about you

VMG 17 Sep 07, 2022
Programming of Robotics Systems course at the University of Aveiro, Portugal, 2021-2022.

Programação de Sistemas Robóticos Miguel Riem Oliveira Universidade de Aveiro 2021-2022 Projeto AtlasCar Projecto RACE IROS 2014 AtlasCar2 ATOM IROS 2

Miguel Riem de Oliveira 22 Jul 13, 2022
Skykettle ha - Redmond SkyKettle integration for Home Assistant

Redmond SkyKettle integration for Home Assistant This integration allows to cont

Alexey 'Cluster' Avdyukhin 48 Jan 06, 2023
raspberry pi servo control using pca9685

RPi_servo-control_pca9685 raspberry pi 180° servo control using pca9685 Requirements Requires you to have the adafruit servokit library installed You

1 Jan 10, 2022
ENC28J60 Ethernet chip driver for MicroPython (RP2)

micropy-ENC28J60 ENC28J60 Ethernet chip driver for MicroPython v1.17 (RP2) Rationale ENC28J60 is a popular and cheap module for DIY projects. At the m

11 Nov 16, 2022
MicroPython driver for 74HC595 shift registers

MicroPython 74HC595 A MicroPython library for 74HC595 8-bit shift registers. There's both an SPI version and a bit-bang version, each with a slightly

Mike Causer 17 Nov 29, 2022
Python library for the Phomemo m02s bluetooth thermal printer

Phomemo M02S Python library This is a basic Python library for controlling the Phomemo M02S bluetooth thermal printer. It probably only works on Mac &

Stargirl Flowers 28 Nov 07, 2022
Play a song with a 3D printer.

MIDI to GCODE Play a song with a FDM 3D printer. SLA printers don't have motors, so they cannot play music. Warning: Be ready to turn off the 3D print

Patrick 6 Apr 11, 2022
PBA: Pleco Breeding Assistant

A small monitor that reports the external, fishroom and water change parameters to have suitable water parameters and induce breeding. These two features already represent 50% of the "reproductive su

Mirko Mancin 1 Jan 19, 2022
FERM: A Framework for Efficient Robotic Manipulation

Framework for Efficient Robotic Manipulation FERM is a framework that enables robots to learn tasks within an hour of real time training.

Ruihan (Philip) Zhao 111 Dec 31, 2022
Imbalaced Classification and Robust Semantic Segmentation

Imbalaced Classification and Robust Semantic Segmentation This repo implements two algoritms. The imbalance clibration (IC) algorithm for image classi

24 Jul 23, 2022
Hotplugger: Real USB Port Passthrough for VFIO/QEMU!

Hotplugger: Real USB Port Passthrough for VFIO/QEMU! Welcome to Hotplugger! This app, as the name might tell you, is a combination of some scripts (py

DARKGuy (Alemar) 66 Nov 24, 2022