Hotplugger: Real USB Port Passthrough for VFIO/QEMU!

Related tags

Hardwarehotplugger
Overview

Hotplugger: Real USB Port Passthrough for VFIO/QEMU!

Welcome to Hotplugger! This app, as the name might tell you, is a combination of some scripts (python, yaml, udev rules and some QEMU args) to allow you to pass through an actual USB port into a VM. Instead of passing the USB root hub (which could have the side effect of passing all the ports, including the ones you didn't want to) or another PCIe hub or something, you can just pass a specific USB port to a VM and have the others free for anything else. Plus, it saves you from using the vfio-pci driver for the USB root hub, so you can keep using it for evdev or other things on the VM host.

Requirements

  • monitor.py and hotplugger.py require Python 3
  • Only tested with QEMU 5.0.0. Untested with older or newer versions.

Quick start (Ubuntu 20.10)

  1. git clone https://github.com/darkguy2008/hotplugger.git

  2. (Optional) run python3 monitor.py and follow the prompts. Basically once you hit Enter you have to plug and unplug an USB device (a thumbdrive or audio device preferred) into the USB ports that you want to know their DEVPATH route from. This will help you identify them so you can write them into config.yaml in the ports array. This array only accepts DEVPATH routes that UDEV generates.

  3. Edit config.yaml. It must stay in the same folder as monitor.py and hotplugger.py. Look at the current example: It's set for a Windows VM (the name doesn't matter, as long as it's unique within the entries of the same file). Make sure the socket property matches the file path of the QEMU chardev device pointing to an Unix domain socket file and in the ports array put the list of the udev DEVPATH of the USB ports you want to pass through to that VM:

    virtual_machines:
    
      windows:
        socket: /home/dragon/vm/test/qmp-sock
        ports:
          - /devices/pci0000:00/0000:00:14.0/usb3/3-1
          - /devices/pci0000:00/0000:00:14.0/usb3/3-2
          - /devices/pci0000:00/0000:00:14.0/usb4/4-1
          - /devices/pci0000:00/0000:00:14.0/usb4/4-2
    
  4. Create an /etc/udev/rules.d/99-zzz-local.rules file with the following content:

    SUBSYSTEM=="usb", ACTION=="add", RUN+="/bin/bash -c 'python3 /path-to-hotplugger/hotplugger.py >> /tmp/hotplugger.log' 2>&1"
    SUBSYSTEM=="usb", ACTION=="remove", RUN+="/bin/bash -c 'python3 /path-to-hotplugger/hotplugger.py >> /tmp/hotplugger.log' 2>&1"
    

    Make sure to change path-to-hotplugger with the path where you cloned the repo to, or installed the package. It can be simplified, but this one is useful in case you want to debug and see what's going on. Otherwise, proceed with a simpler file:

    SUBSYSTEM=="usb", ACTION=="add", RUN+="/bin/bash -c 'python3 /path-to-hotplugger/hotplugger.py'"
    SUBSYSTEM=="usb", ACTION=="remove", RUN+="/bin/bash -c 'python3 /path-to-hotplugger/hotplugger.py'"
    
  5. Create the QMP monitor Unix domain socket if you haven't already in your QEMU args. I use this:

    -chardev socket,id=mon1,server,nowait,path=./qmp-sock
    -mon chardev=mon1,mode=control,pretty=on
    
  6. Have a coffee!

Libvirt setup

This is a work in progress, but here's some steps to get you started:

  1. Edit your VM's XML config like this:

    1. <domain type='kvm' xmlns:qemu='http://libvirt.org/schemas/domain/qemu/1.0'>
        <name>QEMUGuest1name>
        <uuid>c7a5fdbd-edaf-9455-926a-d65c16db1809uuid>
        ...
        <qemu:commandline>
          <qemu:arg value='-chardev'/>
          <qemu:arg value='socket,id=mon1,server,nowait,path=/tmp/my-vm-sock'/>
          <qemu:arg value='-mon'/>
          <qemu:arg value='chardev=mon1,mode=control,pretty=on'/>
        qemu:commandline>
      domain>

      Add the xmlns attribute and the QEMU commandline arguments like that. The /tmp/my-vm-sock is the name of an unix domain socket. You can use any, just make sure to also put the same path in the config.yaml file.

  2. If you get a permissions issue, edit /etc/libvirt/qemu.conf and add security_driver = "none"to it to fix apparmor being annoying about it.

How it works

  1. The udev rule launches the script on every USB event. For each USB add/remove action there's around 3 to 5+ events. This allows the app to act at any step in the action lifecycle.
  2. In the first step it gets the kernel environment variables from udev and stores them in a temp file. In those variables, the DEVPATH, the DEVNUM (host address in QEMU, it seems to change and is sequential...) and the BUSNUM (bus address in QEMU) are captured. For the subsequent events, the following steps are run:
    1. It requests QEMU through the Unix socket and the info usbhost QMP command the USB info from the host. This gives it an extra field: The host port where the device is also connected to. Since I got the host and bus addresses in the first event, I can use that to parse through the info usbhost command's output and find the port connected to the device.
    2. If the port is found, using the device_add command, a new usb-host device is added using the USB bus and port we got in the previous step, and assigns it a predictable ID that it can use to unplug the device afterwards. To add this of course, the VM should have a usb-xhci device I think. Not sure if it's required or not, but I prefer to add it as I have USB 3.0 ports and devices.
    3. The temp file is cleared once the device_add command has run successfully.

Steps 2.1, 2.2 and 2.3 are run on every udev event. For instance, for an audio device it gets 3 or 4 events: One for the HID device, and two or so for the audio devices. My audio device (Corsair Void Elite Wireless) has both stereo audio and a communications device (mono audio, for mic) so for a single dongle like that I get those many events. Since these steps are ran on all the events, there's multiple chances to do the hotplug action. When one of them succeeds, the others will silently fail as QEMU will say that the same device ID is being used, so all is good.

Troubleshooting

If for some reason the app doesn't seem to work, try these methods:

  • Remove the /tmp folder where hotplugger.py is located
  • Reboot the computer
  • Reboot udev: sudo udevadm control --reload-rules && sudo udevadm trigger
  • View udev's logfile: sudo service udev restart && sudo udevadm control --log-priority=debug && journalctl -f | grep -i hotplugger
  • If you want to see what will be run when you plug a device, try with this command to simulate an udev event: udevadm test $(udevadm info -a --path=/devices/pci0000:00/0000:00:14.0/usb3/3-1/3-1:1.0) --action=add replacing --path with the path of the USB port down to the device itself (in this case, I had a device connected to the usb3/3-1 port, identified as 3-1:1.0.

Thank you!

A lot of work and sleepless nights were involved in this procedure, so if this app helps you in any way or another, please consider sending a small donation, it helps a lot in these tough times!

Changelog

(2020-02-05)

  • Initial changelog writing
  • App was refactored a bit with improved python mad skillz. It also seems to be a bit more stable and robust, it doesn't hang much anymore and USB detection seems to work better. This is due to the fact that I added a stupid 1-second delay after all the USB UDEV events have gone through. Since there's no way to know when UDEV has "finished" sending all the events (and there could be a lot more) the commands being sent to QEMU to add the device will have to wait 1 second now. While it's not ideal, it should be enough to avoid a VM hanging up and I can live with that.
Owner
DARKGuy (Alemar)
DARKGuy (Alemar)
A simple portable USB MIDI controller based on Raspberry-PI Pico and a 16-button keypad, written in Circuit Python

RPI-Pico-16-BTn-MIDI-Controller-using-CircuitPython A simple portable USB MIDI controller based on Raspberry-PI Pico, written in Circuit Python. Link

Rounak Dutta 3 Dec 04, 2022
A python file which I wrote to allow the Dorna Robots API to draw an Image on a 3D plane

Dorna-Robotics-Internship Code In the directory "Code" is a python file which I wrote to allow the Dorna Robots API to draw an Image on a 3D plane. I

Stephen Otto 2 Dec 06, 2021
PyTorch implementation of paper "MT-ORL: Multi-Task Occlusion Relationship Learning" (ICCV 2021)

MT-ORL: Multi-Task Occlusion Relationship Learning Official implementation of paper "MT-ORL: Multi-Task Occlusion Relationship Learning" (ICCV 2021) P

Panhe Feng 12 Oct 11, 2022
The main aim of this project is to avoid the accidents in shredding ( Waste Recycling Industry )

shredder-Machine-Hand-Safety The main aim of this project is to avoid the accidents in shredding ( Waste Recycling Industry ) . The Basic function of

Shubham Chaudhari 1 Nov 15, 2021
Play a song with a 3D printer.

MIDI to GCODE Play a song with a FDM 3D printer. SLA printers don't have motors, so they cannot play music. Warning: Be ready to turn off the 3D print

Patrick 6 Apr 11, 2022
Robot Framework keyword library wrapper for atlassian-python-api

Robot Framework keyword library wrapper for atlassian-python-api

Marcin Koperski 3 Jul 29, 2022
Python para microcontroladores com MicroPyhton

MicroPython - PyBR2021 Python para microcontroladores com MicroPyhton Repositório de exemplos para tutorial "Python para microcontroladores com MicroP

gabriel aragão 1 Oct 18, 2021
Pi-hole with Inky pHAT ePaper display

Pi-hole with Inky pHAT ePaper display This is my Pi-hole with an ePaper display.

11 Sep 13, 2022
Alarm Control Panel component for Zigbee Keypads using action_transaction field

hass_transaction_alarm_panel Alarm Control Panel component for Zigbee Keypads using action_transaction field. Works together with zigbee2mqtt Supporte

Konstantin 4 Jun 09, 2022
It is a serial communicator(controller, receiver...), communicate with sensor LP20 which is a laser ranger.

Intro It is a serial communicator(controller, receiver...), communicate with sensor LP20 which is a laser ranger. Its datasheet is contained in this r

3 Sep 19, 2022
CircuitPython library for the CH559 USB to Serial chip

CH559 (USB to Serial) CircuitPython Library Why? Because you might want to get keyboard/mouse/gamepad/HID input into your CircuitPython projects witho

Guy Dupont 3 Nov 19, 2022
Home solar infrastructure (with Peimar Inverter) monitoring based on Raspberry Pi 3 B+ using Grafana, InfluxDB, Custom Python Collector and Shelly EM.

raspberry-solar-mon Home solar infrastructure (with Peimar Inverter) monitoring based on Raspberry Pi 3 B+ using Grafana, InfluxDB, Custom Python Coll

cislow 10 Dec 23, 2022
Python Client for ESPHome native API. Used by Home Assistant.

aioesphomeapi aioesphomeapi allows you to interact with devices flashed with ESPHome. Installation The module is available from the Python Package Ind

ESPHome 76 Jan 04, 2023
Jarvis: a personal assistant which can help you to manage your system

Jarvis Jarvis is personal AI based assistant which can help you to manage stuff in your computer. This is demo but I decided to make it more better so

2 Jun 02, 2022
PlatformIO development platform for GSM modules

PlatformIO development platform for GSM modules Supported Modules Quectel M66 OpenCPU Arduino - TODO other - in progress... Supported Boards Comet M66

Georgi Angelov 5 Aug 06, 2022
A lightweight script for updating custom components for Home Assistant

Updater for Home Assistant This is a lightweight script for updating custom components for Home Assistant. If for some reason you do not want to use H

Alex X 12 Sep 21, 2022
Sticklog2heatmap - Draw a heatmap of RC sticks from OpenTX logs or USB HID device

sticklog2heatmap Draw a heatmap of RC sticks from OpenTX logs or USB HID device

2 Feb 02, 2022
This repository contains all the code and files needed to simulate the notspot quadrupedal robot using Gazebo and ROS.

Notspot robot simulation - Python version This repository contains all the files and code needed to simulate the notspot quadrupedal robot using Gazeb

50 Sep 26, 2022
A simple small scale electric car was build which can be driven by remote control and features a fully autonomous parking procedure.

personal-autonomous-parking-car-raspberry A simple electric car model was build using Raspbery pi. The car has remote control and autonomous operation

Kostas Ziovas 2 Jan 26, 2022
The robot is an autonomous small scale racing car using NVIDIA Jetson Nano.

The robot is an autonomous small scale racing car using NVIDIA Jetson Nano. This project utilizes deep learning neural network framework Keras/Tensorflow, together with computer vision library OpenCV

1 Dec 08, 2021