Automatically remove the mosaics in images and videos, or add mosaics to them.

Overview


DeepMosaics

English | 中文
You can use it to automatically remove the mosaics in images and videos, or add mosaics to them.
This project is based on "semantic segmentation" and "Image-to-Image Translation".
Try it at this website!

Examples

image

origin auto add mosaic auto clean mosaic
image image image
image image image
mosaic image DeepCreamPy ours
image image image
image image image
  • Style Transfer
origin to Van Gogh to winter
image image image

An interesting example:Ricardo Milos to cat

Run DeepMosaics

You can either run DeepMosaics via a pre-built binary package, or from source.

Try it on web

You can simply try to remove the mosaic on the face at this website.

Pre-built binary package

For Windows, we bulid a GUI version for easy testing.
Download this version, and a pre-trained model via [Google Drive] [百度云,提取码1x0a]

image
Attentions:

  • Requires Windows_x86_64, Windows10 is better.
  • Different pre-trained models are suitable for different effects.[Introduction to pre-trained models]
  • Run time depends on computers performance (GPU version has better performance but requires CUDA to be installed).
  • If output video cannot be played, you can try with potplayer.
  • GUI version updates slower than source.

Run From Source

Prerequisites

Dependencies

This code depends on opencv-python, torchvision available via pip install.

Clone this repo

git clone https://github.com/HypoX64/DeepMosaics.git
cd DeepMosaics

Get Pre-Trained Models

You can download pre_trained models and put them into './pretrained_models'.
[Google Drive] [百度云,提取码1x0a]
[Introduction to pre-trained models]

In order to add/remove mosaic, there must be a model file mosaic_position.pth at ./pretrained_models/mosaic/mosaic_position.pth

Install dependencies

(Optional) Create a virtual environment

virtualenv mosaic
source mosaic/bin/activate

Then install the dependencies

pip install -r requirements.txt

If you can not build scikit-image, running export CFLAGS='-Wno-implicit-function-declaration then try to rebuild.

Simple Example

  • Add Mosaic (output media will be saved in './result')
python deepmosaic.py --media_path ./imgs/ruoruo.jpg --model_path ./pretrained_models/mosaic/add_face.pth --gpu_id 0
  • Clean Mosaic (output media will save in './result')
python deepmosaic.py --media_path ./result/ruoruo_add.jpg --model_path ./pretrained_models/mosaic/clean_face_HD.pth --gpu_id 0

If you see the error Please check mosaic_position_model_path!, check if there is a model file named mosaic_position.pth at ./pretrained_models/mosaic/mosaic_position.pth

More Parameters

If you want to test other images or videos, please refer to this file.
[options_introduction.md]

Training With Your Own Dataset

If you want to train with your own dataset, please refer to training_with_your_own_dataset.md

Acknowledgements

This code borrows heavily from [pytorch-CycleGAN-and-pix2pix] [Pytorch-UNet] [pix2pixHD] [BiSeNet] [DFDNet] [GFRNet_pytorch_new].

Comments
  • 运行错误

    运行错误

    Clean temp... segment parameters: 12.4M netG parameters: 11.38M Clean Mosaic: C:\Users\OneRains\Desktop\mosaic.png --------------------ERROR-------------------- --------------Environment-------------- DeepMosaics: 0.4.0 Python: 3.6.9 |Anaconda, Inc.| (default, Jul 30 2019, 14:00:49) [MSC v.1915 64 bit (AMD64)] Pytorch: 0.4.1 OpenCV: 4.1.0 Platform: Windows-10-10.0.18362-SP0 --------------BUG-------------- Error Type: <class 'cv2.error'> OpenCV(4.1.0) c:\projects\opencv-python\opencv\modules\imgproc\src\filterengine.hpp:363: error: (-215:Assertion failed) anchor.inside(Rect(0, 0, ksize.width, ksize.height)) in function 'cv::normalizeAnchor'

    <FrameSummary file deepmosaic.py, line 64 in > <FrameSummary file deepmosaic.py, line 40 in main> <FrameSummary file cores\core.py, line 169 in cleanmosaic_img> <FrameSummary file models\runmodel.py, line 75 in get_mosaic_position> <FrameSummary file util\image_processing.py, line 201 in mask_threshold> Please press any key to exit.

    bug todo 
    opened by OneRain233 7
  • Update dependency version and docs

    Update dependency version and docs

    1. Update readme.md to include:
      • How to install dependencies
      • Troubleshoot issue Please check mosaic_position_model_path!
      • Troubleshoot issue when building scikit-image
    2. Bump version of numpy to 1.19.3 to solve conflict with opencv_python (openvc_python require numpy >=1.19.3)
    opened by conanak99 5
  • i got error and i don't know why

    i got error and i don't know why

    --------------------ERROR-------------------- Error Type: <class 'UnboundLocalError'> local variable 'img_fake' referenced before assignment <FrameSummary file deepmosaic.py, line 66 in > <FrameSummary file deepmosaic.py, line 45 in main> <FrameSummary file D:\DeepMosaics-master\cores\core.py, line 142 in cleanmosaic_video_byframe> Please press any key to exit.

    i run the program on windows 10 with newest python and got this error.

    i don't know how to fix it.

    opened by skyzombie89 5
  • Find mosaic location error: too many values to unpack (expected 2)

    Find mosaic location error: too many values to unpack (expected 2)

    Hi, I'm getting following error when running on python 3.6. Do you know what could cause the issue? Thanks

    frame=26508 fps=194 q=0.0 Lsize=N/A time=00:14:43.60 bitrate=N/A dup=4 drop=0 speed=6.45x
    video:1418716kB audio:0kB subtitle:0kB other streams:0kB global headers:0kB muxing overhead: unknown
    Find mosaic location:
    --------------------ERROR--------------------
    Error Type: <class 'ValueError'>
    too many values to unpack (expected 2)
    <FrameSummary file deepmosaic.py, line 64 in <module>>
    <FrameSummary file deepmosaic.py, line 43 in main>
    <FrameSummary file C:\temp\DeepMosaics-master\cores\core.py, line 233 in cleanmosaic_video_fusion>
    <FrameSummary file C:\temp\DeepMosaics-master\cores\core.py, line 144 in get_mosaic_positions>
    <FrameSummary file C:\temp\DeepMosaics-master\models\runmodel.py, line 77 in get_mosaic_position>
    <FrameSummary file C:\temp\DeepMosaics-master\util\image_processing.py, line 149 in find_mostlikely_ROI>
    Please press any key to exit.
    
    opened by j4m3s0z 4
  • Can't Detect Mosaic

    Can't Detect Mosaic

    I just tested out on Google Colab with image sample on readme (white cloth girl), and result is still the same (blurred face)

    Tested on: Google Colab
    Runtime: GPU
    Cuda: True
    

    More information & screenshot here

    opened by BroNils 4
  • JSONDecodeError when running from Source

    JSONDecodeError when running from Source

    After attempting to change the ffmpeg parameters in the pre build version, unsuccessful, i am now trying to run DeepMasaics from source.

    So far i stuck to the installation guide on the front page, i cloned the repository and installed all the dependencies. When im trying to run it from the command line (i'm using Power Shell) i get this error: --------------BUG-------------- Error Type: <class 'json.decoder.JSONDecodeError'> Expecting value: line 1 column 1 (char 0) <FrameSummary file V:\DeepMosaics\deepmosaic.py, line 77 in <module>> <FrameSummary file V:\DeepMosaics\deepmosaic.py, line 51 in main> <FrameSummary file V:\DeepMosaics\cores\clean.py, line 169 in cleanmosaic_video_fusion> <FrameSummary file V:\DeepMosaics\cores\init.py, line 8 in video_init> <FrameSummary file V:\DeepMosaics\util\ffmpeg.py, line 63 in get_video_infos> <FrameSummary file C:\Users\First User\AppData\Local\Programs\Python\Python39\lib\json\__init__.py, line 346 in loads> <FrameSummary file C:\Users\First User\AppData\Local\Programs\Python\Python39\lib\json\decoder.py, line 337 in decode> <FrameSummary file C:\Users\First User\AppData\Local\Programs\Python\Python39\lib\json\decoder.py, line 355 in raw_decode> Please press any key to exit.

    This is what i have installed: (im Running Windows 10) --------------Environment-------------- DeepMosaics: 0.5.1 Python: 3.9.4 (tags/v3.9.4:1f2e308, Apr 6 2021, 13:40:21) [MSC v.1928 64 bit (AMD64)] Pytorch: 1.10.0+cu102 OpenCV: 4.5.5

    This is the command im running from within the DeepMosaics Folder: python deepmosaic.py --mode clean --media_path V:\test.mp4 --model_path V:\DeepMosaics\pretrained_models\clean_youknow_video.pth --fps 0 --gpu_id 0 -ss 00:00:00 -t 00:00:00 --result_dir V:\DeepResult\ --mask_threshold 64 --tempimage_type png

    To me it looks like it cant get useful data from the video, but its a bog standard h264 encoded .mp4 (SD resolution, constant frame rate)

    opened by Lukas-52 2
  • [Type of Generator error!] Test error occur when testing model trained with pix2pixHD

    [Type of Generator error!] Test error occur when testing model trained with pix2pixHD

    Type of Generator error! Please press any key to exit.

    If set --netG to be HD, the error is as follows: segment parameters: 12.4M --------------------ERROR-------------------- --------------Environment-------------- DeepMosaics: 0.5.0 Python: 3.7.5 (default, Nov 7 2019, 10:50:52) [GCC 8.3.0] Pytorch: 1.6.0 OpenCV: 4.5.1 Platform: Linux-5.4.0-65-generic-x86_64-with-Ubuntu-18.04-bionic --------------BUG-------------- Error Type: <class 'RuntimeError'> Error(s) in loading state_dict for BiSeNet: Missing key(s) in state_dict: "saptial_path.convblock1.conv1.weight", "saptial_path.convblock1.bn.weight", "saptial_path.convblock1.bn.bias", "saptial_path.convblock1.bn.running_mean", "saptial_path.convblock1.bn.running_var", "saptial_path.convblock2.conv1.weight", "saptial_path.convblock2.bn.weight", "saptial_path.convblock2.bn.bias", "saptial_path.convblock2.bn.running_mean", "saptial_path.convblock2.bn.running_var", "saptial_path.convblock3.conv1.weight", "saptial_path.convblock3.bn.weight", "saptial_path.convblock3.bn.bias", "saptial_path.convblock3.bn.running_mean", "saptial_path.convblock3.bn.running_var", "context_path.features.conv1.weight", "context_path.features.bn1.weight", "context_path.features.bn1.bias", "context_path.features.bn1.running_mean", "context_path.features.bn1.running_var", "context_path.features.layer1.0.conv1.weight", "context_path.features.layer1.0.bn1.weight", "context_path.features.layer1.0.bn1.bias", "context_path.features.layer1.0.bn1.running_mean", "context_path.features.layer1.0.bn1.running_var", "context_path.features.layer1.0.conv2.weight", "context_path.features.layer1.0.bn2.weight", "context_path.features.layer1.0.bn2.bias", "context_path.features.layer1.0.bn2.running_mean", "context_path.features.layer1.0.bn2.running_var", "context_path.features.layer1.1.conv1.weight", "context_path.features.layer1.1.bn1.weight", "context_path.features.layer1.1.bn1.bias", "context_path.features.layer1.1.bn1.running_mean", "context_path.features.layer1.1.bn1.running_var", "context_path.features.layer1.1.conv2.weight", "context_path.features.layer1.1.bn2.weight", "context_path.features.layer1.1.bn2.bias", "context_path.features.layer1.1.bn2.running_mean", "context_path.features.layer1.1.bn2.running_var", "context_path.features.layer2.0.conv1.weight", "context_path.features.layer2.0.bn1.weight", "context_path.features.layer2.0.bn1.bias", "context_path.features.layer2.0.bn1.running_mean", "context_path.features.layer2.0.bn1.running_var", "context_path.features.layer2.0.conv2.weight", "context_path.features.layer2.0.bn2.weight", "context_path.features.layer2.0.bn2.bias", "context_path.features.layer2.0.bn2.running_mean", "context_path.features.layer2.0.bn2.running_var", "context_path.features.layer2.0.downsample.0.weight", "context_path.features.layer2.0.downsample.1.weight", "context_path.features.layer2.0.downsample.1.bias", "context_path.features.layer2.0.downsample.1.running_mean", "context_path.features.layer2.0.downsample.1.running_var", "context_path.features.layer2.1.conv1.weight", "context_path.features.layer2.1.bn1.weight", "context_path.features.layer2.1.bn1.bias", "context_path.features.layer2.1.bn1.running_mean", "context_path.features.layer2.1.bn1.running_var", "context_path.features.layer2.1.conv2.weight", "context_path.features.layer2.1.bn2.weight", "context_path.features.layer2.1.bn2.bias", "context_path.features.layer2.1.bn2.running_mean", "context_path.features.layer2.1.bn2.running_var", "context_path.features.layer3.0.conv1.weight", "context_path.features.layer3.0.bn1.weight", "context_path.features.layer3.0.bn1.bias", "context_path.features.layer3.0.bn1.running_mean", "context_path.features.layer3.0.bn1.running_var", "context_path.features.layer3.0.conv2.weight", "context_path.features.layer3.0.bn2.weight", "context_path.features.layer3.0.bn2.bias", "context_path.features.layer3.0.bn2.running_mean", "context_path.features.layer3.0.bn2.running_var", "context_path.features.layer3.0.downsample.0.weight", "context_path.features.layer3.0.downsample.1.weight", "context_path.features.layer3.0.downsample.1.bias", "context_path.features.layer3.0.downsample.1.running_mean", "context_path.features.layer3.0.downsample.1.running_var", "context_path.features.layer3.1.conv1.weight", "context_path.features.layer3.1.bn1.weight", "context_path.features.layer3.1.bn1.bias", "context_path.features.layer3.1.bn1.running_mean", "context_path.features.layer3.1.bn1.running_var", "context_path.features.layer3.1.conv2.weight", "context_path.features.layer3.1.bn2.weight", "context_path.features.layer3.1.bn2.bias", "context_path.features.layer3.1.bn2.running_mean", "context_path.features.layer3.1.bn2.running_var", "context_path.features.layer4.0.conv1.weight", "context_path.features.layer4.0.bn1.weight", "context_path.features.layer4.0.bn1.bias", "context_path.features.layer4.0.bn1.running_mean", "context_path.features.layer4.0.bn1.running_var", "context_path.features.layer4.0.conv2.weight", "context_path.features.layer4.0.bn2.weight", "context_path.features.layer4.0.bn2.bias", "context_path.features.layer4.0.bn2.running_mean", "context_path.features.layer4.0.bn2.running_var", "context_path.features.layer4.0.downsample.0.weight", "context_path.features.layer4.0.downsample.1.weight", "context_path.features.layer4.0.downsample.1.bias", "context_path.features.layer4.0.downsample.1.running_mean", "context_path.features.layer4.0.downsample.1.running_var", "context_path.features.layer4.1.conv1.weight", "context_path.features.layer4.1.bn1.weight", "context_path.features.layer4.1.bn1.bias", "context_path.features.layer4.1.bn1.running_mean", "context_path.features.layer4.1.bn1.running_var", "context_path.features.layer4.1.conv2.weight", "context_path.features.layer4.1.bn2.weight", "context_path.features.layer4.1.bn2.bias", "context_path.features.layer4.1.bn2.running_mean", "context_path.features.layer4.1.bn2.running_var", "context_path.features.fc.weight", "context_path.features.fc.bias", "context_path.conv1.weight", "context_path.bn1.weight", "context_path.bn1.bias", "context_path.bn1.running_mean", "context_path.bn1.running_var", "context_path.layer1.0.conv1.weight", "context_path.layer1.0.bn1.weight", "context_path.layer1.0.bn1.bias", "context_path.layer1.0.bn1.running_mean", "context_path.layer1.0.bn1.running_var", "context_path.layer1.0.conv2.weight", "context_path.layer1.0.bn2.weight", "context_path.layer1.0.bn2.bias", "context_path.layer1.0.bn2.running_mean", "context_path.layer1.0.bn2.running_var", "context_path.layer1.1.conv1.weight", "context_path.layer1.1.bn1.weight", "context_path.layer1.1.bn1.bias", "context_path.layer1.1.bn1.running_mean", "context_path.layer1.1.bn1.running_var", "context_path.layer1.1.conv2.weight", "context_path.layer1.1.bn2.weight", "context_path.layer1.1.bn2.bias", "context_path.layer1.1.bn2.running_mean", "context_path.layer1.1.bn2.running_var", "context_path.layer2.0.conv1.weight", "context_path.layer2.0.bn1.weight", "context_path.layer2.0.bn1.bias", "context_path.layer2.0.bn1.running_mean", "context_path.layer2.0.bn1.running_var", "context_path.layer2.0.conv2.weight", "context_path.layer2.0.bn2.weight", "context_path.layer2.0.bn2.bias", "context_path.layer2.0.bn2.running_mean", "context_path.layer2.0.bn2.running_var", "context_path.layer2.0.downsample.0.weight", "context_path.layer2.0.downsample.1.weight", "context_path.layer2.0.downsample.1.bias", "context_path.layer2.0.downsample.1.running_mean", "context_path.layer2.0.downsample.1.running_var", "context_path.layer2.1.conv1.weight", "context_path.layer2.1.bn1.weight", "context_path.layer2.1.bn1.bias", "context_path.layer2.1.bn1.running_mean", "context_path.layer2.1.bn1.running_var", "context_path.layer2.1.conv2.weight", "context_path.layer2.1.bn2.weight", "context_path.layer2.1.bn2.bias", "context_path.layer2.1.bn2.running_mean", "context_path.layer2.1.bn2.running_var", "context_path.layer3.0.conv1.weight", "context_path.layer3.0.bn1.weight", "context_path.layer3.0.bn1.bias", "context_path.layer3.0.bn1.running_mean", "context_path.layer3.0.bn1.running_var", "context_path.layer3.0.conv2.weight", "context_path.layer3.0.bn2.weight", "context_path.layer3.0.bn2.bias", "context_path.layer3.0.bn2.running_mean", "context_path.layer3.0.bn2.running_var", "context_path.layer3.0.downsample.0.weight", "context_path.layer3.0.downsample.1.weight", "context_path.layer3.0.downsample.1.bias", "context_path.layer3.0.downsample.1.running_mean", "context_path.layer3.0.downsample.1.running_var", "context_path.layer3.1.conv1.weight", "context_path.layer3.1.bn1.weight", "context_path.layer3.1.bn1.bias", "context_path.layer3.1.bn1.running_mean", "context_path.layer3.1.bn1.running_var", "context_path.layer3.1.conv2.weight", "context_path.layer3.1.bn2.weight", "context_path.layer3.1.bn2.bias", "context_path.layer3.1.bn2.running_mean", "context_path.layer3.1.bn2.running_var", "context_path.layer4.0.conv1.weight", "context_path.layer4.0.bn1.weight", "context_path.layer4.0.bn1.bias", "context_path.layer4.0.bn1.running_mean", "context_path.layer4.0.bn1.running_var", "context_path.layer4.0.conv2.weight", "context_path.layer4.0.bn2.weight", "context_path.layer4.0.bn2.bias", "context_path.layer4.0.bn2.running_mean", "context_path.layer4.0.bn2.running_var", "context_path.layer4.0.downsample.0.weight", "context_path.layer4.0.downsample.1.weight", "context_path.layer4.0.downsample.1.bias", "context_path.layer4.0.downsample.1.running_mean", "context_path.layer4.0.downsample.1.running_var", "context_path.layer4.1.conv1.weight", "context_path.layer4.1.bn1.weight", "context_path.layer4.1.bn1.bias", "context_path.layer4.1.bn1.running_mean", "context_path.layer4.1.bn1.running_var", "context_path.layer4.1.conv2.weight", "context_path.layer4.1.bn2.weight", "context_path.layer4.1.bn2.bias", "context_path.layer4.1.bn2.running_mean", "context_path.layer4.1.bn2.running_var", "attention_refinement_module1.conv.weight", "attention_refinement_module1.conv.bias", "attention_refinement_module1.bn.weight", "attention_refinement_module1.bn.bias", "attention_refinement_module1.bn.running_mean", "attention_refinement_module1.bn.running_var", "attention_refinement_module2.conv.weight", "attention_refinement_module2.conv.bias", "attention_refinement_module2.bn.weight", "attention_refinement_module2.bn.bias", "attention_refinement_module2.bn.running_mean", "attention_refinement_module2.bn.running_var", "supervision1.weight", "supervision1.bias", "supervision2.weight", "supervision2.bias", "feature_fusion_module.convblock.conv1.weight", "feature_fusion_module.convblock.bn.weight", "feature_fusion_module.convblock.bn.bias", "feature_fusion_module.convblock.bn.running_mean", "feature_fusion_module.convblock.bn.running_var", "feature_fusion_module.conv1.weight", "feature_fusion_module.conv1.bias", "feature_fusion_module.conv2.weight", "feature_fusion_module.conv2.bias", "conv.weight", "conv.bias". Unexpected key(s) in state_dict: "model.1.weight", "model.1.bias", "model.4.weight", "model.4.bias", "model.7.weight", "model.7.bias", "model.10.weight", "model.10.bias", "model.13.weight", "model.13.bias", "model.16.conv_block.1.weight", "model.16.conv_block.1.bias", "model.16.conv_block.5.weight", "model.16.conv_block.5.bias", "model.17.conv_block.1.weight", "model.17.conv_block.1.bias", "model.17.conv_block.5.weight", "model.17.conv_block.5.bias", "model.18.conv_block.1.weight", "model.18.conv_block.1.bias", "model.18.conv_block.5.weight", "model.18.conv_block.5.bias", "model.19.conv_block.1.weight", "model.19.conv_block.1.bias", "model.19.conv_block.5.weight", "model.19.conv_block.5.bias", "model.20.conv_block.1.weight", "model.20.conv_block.1.bias", "model.20.conv_block.5.weight", "model.20.conv_block.5.bias", "model.21.conv_block.1.weight", "model.21.conv_block.1.bias", "model.21.conv_block.5.weight", "model.21.conv_block.5.bias", "model.22.conv_block.1.weight", "model.22.conv_block.1.bias", "model.22.conv_block.5.weight", "model.22.conv_block.5.bias", "model.23.conv_block.1.weight", "model.23.conv_block.1.bias", "model.23.conv_block.5.weight", "model.23.conv_block.5.bias", "model.24.conv_block.1.weight", "model.24.conv_block.1.bias", "model.24.conv_block.5.weight", "model.24.conv_block.5.bias", "model.25.weight", "model.25.bias", "model.28.weight", "model.28.bias", "model.31.weight", "model.31.bias", "model.34.weight", "model.34.bias", "model.38.weight", "model.38.bias". <FrameSummary file /mnt/diskc/even/DeepMosaic/deepmosaic.py, line 81 in > <FrameSummary file /mnt/diskc/even/DeepMosaic/deepmosaic.py, line 40 in run> <FrameSummary file /mnt/diskc/even/DeepMosaic/models/loadmodel.py, line 86 in bisenet> <FrameSummary file /home/jaya/.local/lib/python3.7/site-packages/torch/nn/modules/module.py, line 1045 in load_state_dict> Please press any key to exit.

    opened by CaptainEven 2
  • Recommended Hardware or Adjust Parameter for low end GPU

    Recommended Hardware or Adjust Parameter for low end GPU

    I'm running into a CUDA out of memory error. Currently, I'm using i3-6100 with 16GB of memory and a Nvidia GTX 750 that only has 1GB of memory. Is there a way to adjust the parameter for low end GPU? If not, what's the minimum memory required for the GPU?

    opened by Engrish 2
  • class 'RuntimeError'

    class 'RuntimeError'

    I run this in python 3.6.8 and 3.7.10. Got the following error. Do you know why? Error Type: <class 'RuntimeError'> Given groups=1, weight of size [64, 3, 3, 3], expected input[1, 4, 500, 360] to have 3 channels, but got 4 channels instead <FrameSummary file deepmosaic.py, line 66 in > <FrameSummary file deepmosaic.py, line 40 in main> <FrameSummary file cores\core.py, line 112 in cleanmosaic_img> <FrameSummary file models\runmodel.py, line 73 in get_mosaic_position> <FrameSummary file models\runmodel.py, line 13 in run_segment> <FrameSummary file site-packages\torch\nn\modules\module.py, line 477 in call> <FrameSummary file models\BiSeNet_model.py, line 236 in forward> <FrameSummary file site-packages\torch\nn\modules\module.py, line 477 in call> <FrameSummary file models\BiSeNet_model.py, line 122 in forward> <FrameSummary file site-packages\torch\nn\modules\module.py, line 477 in call> <FrameSummary file models\BiSeNet_model.py, line 111 in forward> <FrameSummary file site-packages\torch\nn\modules\module.py, line 477 in call> <FrameSummary file site-packages\torch\nn\modules\conv.py, line 301 in forward> Please press any key to exit.

    opened by nichijou147 2
  • exiting due to unkown error

    exiting due to unkown error

    deep mosiac exits early when rebuilding the video when using google colab. The video being processed has been cut using the windows photo app which might be an issue. The input command is !python3 deepmosaic.py --media_path="/content/DeepMosaics/imgs/MIDD-817(1a).mp4" --model_path="/content/DeepMosaics/pretrained_models/clean_youknow_video.pth" --mode="clean" --no_preview --gpu_id=0 --fps 0 -ss 00:00:00 -t 00:00:00 --mask_threshold 64 and the output is attached below.

    makedir: ./result segment parameters: 12.4M netG parameters: 26.65M Step:1/4 -- Convert video to images Clean temp... ffmpeg version 3.4.8-0ubuntu0.2 Copyright (c) 2000-2020 the FFmpeg developers built with gcc 7 (Ubuntu 7.5.0-3ubuntu1~18.04) configuration: --prefix=/usr --extra-version=0ubuntu0.2 --toolchain=hardened --libdir=/usr/lib/x86_64-linux-gnu --incdir=/usr/include/x86_64-linux-gnu --enable-gpl --disable-stripping --enable-avresample --enable-avisynth --enable-gnutls --enable-ladspa --enable-libass --enable-libbluray --enable-libbs2b --enable-libcaca --enable-libcdio --enable-libflite --enable-libfontconfig --enable-libfreetype --enable-libfribidi --enable-libgme --enable-libgsm --enable-libmp3lame --enable-libmysofa --enable-libopenjpeg --enable-libopenmpt --enable-libopus --enable-libpulse --enable-librubberband --enable-librsvg --enable-libshine --enable-libsnappy --enable-libsoxr --enable-libspeex --enable-libssh --enable-libtheora --enable-libtwolame --enable-libvorbis --enable-libvpx --enable-libwavpack --enable-libwebp --enable-libx265 --enable-libxml2 --enable-libxvid --enable-libzmq --enable-libzvbi --enable-omx --enable-openal --enable-opengl --enable-sdl2 --enable-libdc1394 --enable-libdrm --enable-libiec61883 --enable-chromaprint --enable-frei0r --enable-libopencv --enable-libx264 --enable-shared libavutil 55. 78.100 / 55. 78.100 libavcodec 57.107.100 / 57.107.100 libavformat 57. 83.100 / 57. 83.100 libavdevice 57. 10.100 / 57. 10.100 libavfilter 6.107.100 / 6.107.100 libavresample 3. 7. 0 / 3. 7. 0 libswscale 4. 8.100 / 4. 8.100 libswresample 2. 9.100 / 2. 9.100 libpostproc 54. 7.100 / 54. 7.100 Input #0, mov,mp4,m4a,3gp,3g2,mj2, from '/content/DeepMosaics/imgs/MIDD-817(1a).mp4': Metadata: major_brand : mp42 minor_version : 0 compatible_brands: mp41isom creation_time : 2020-02-12T18:31:23.000000Z Duration: 00:29:00.67, start: 0.000000, bitrate: 3902 kb/s Stream #0:0(und): Video: h264 (Main) (avc1 / 0x31637661), yuv420p(tv), 1920x1080 [SAR 1:1 DAR 16:9], 3707 kb/s, 30 fps, 30 tbr, 30k tbn, 60 tbc (default) Metadata: creation_time : 2021-07-27T15:07:05.000000Z handler_name : VideoHandler encoder : AVC Coding Stream #0:1(und): Audio: aac (LC) (mp4a / 0x6134706D), 48000 Hz, stereo, fltp, 192 kb/s (default) Metadata: creation_time : 2021-07-27T15:07:05.000000Z handler_name : SoundHandler Stream mapping: Stream #0:1 -> #0:0 (aac (native) -> mp3 (libmp3lame)) Press [q] to stop, [?] for help -async is forwarded to lavfi similarly to -af aresample=async=1:min_hard_comp=0.100000:first_pts=0. Output #0, mp3, to './tmp/DeepMosaics_temp/voice_tmp.mp3': Metadata: major_brand : mp42 minor_version : 0 compatible_brands: mp41isom TSSE : Lavf57.83.100 Stream #0:0(und): Audio: mp3 (libmp3lame), 48000 Hz, stereo, fltp, 320 kb/s (default) Metadata: creation_time : 2021-07-27T15:07:05.000000Z handler_name : SoundHandler encoder : Lavc57.107.100 libmp3lame [aac @ 0x560c0eb5f900] decode_band_types: Input buffer exhausted before END element found Error while decoding stream #0:1: Invalid data found when processing input size= 67997kB time=00:29:00.67 bitrate= 320.0kbits/s speed=41.7x
    video:0kB audio:67996kB subtitle:0kB other streams:0kB global headers:0kB muxing overhead: 0.001577% ffmpeg version 3.4.8-0ubuntu0.2 Copyright (c) 2000-2020 the FFmpeg developers built with gcc 7 (Ubuntu 7.5.0-3ubuntu1~18.04) configuration: --prefix=/usr --extra-version=0ubuntu0.2 --toolchain=hardened --libdir=/usr/lib/x86_64-linux-gnu --incdir=/usr/include/x86_64-linux-gnu --enable-gpl --disable-stripping --enable-avresample --enable-avisynth --enable-gnutls --enable-ladspa --enable-libass --enable-libbluray --enable-libbs2b --enable-libcaca --enable-libcdio --enable-libflite --enable-libfontconfig --enable-libfreetype --enable-libfribidi --enable-libgme --enable-libgsm --enable-libmp3lame --enable-libmysofa --enable-libopenjpeg --enable-libopenmpt --enable-libopus --enable-libpulse --enable-librubberband --enable-librsvg --enable-libshine --enable-libsnappy --enable-libsoxr --enable-libspeex --enable-libssh --enable-libtheora --enable-libtwolame --enable-libvorbis --enable-libvpx --enable-libwavpack --enable-libwebp --enable-libx265 --enable-libxml2 --enable-libxvid --enable-libzmq --enable-libzvbi --enable-omx --enable-openal --enable-opengl --enable-sdl2 --enable-libdc1394 --enable-libdrm --enable-libiec61883 --enable-chromaprint --enable-frei0r --enable-libopencv --enable-libx264 --enable-shared libavutil 55. 78.100 / 55. 78.100 libavcodec 57.107.100 / 57.107.100 libavformat 57. 83.100 / 57. 83.100 libavdevice 57. 10.100 / 57. 10.100 libavfilter 6.107.100 / 6.107.100 libavresample 3. 7. 0 / 3. 7. 0 libswscale 4. 8.100 / 4. 8.100 libswresample 2. 9.100 / 2. 9.100 libpostproc 54. 7.100 / 54. 7.100 Input #0, mov,mp4,m4a,3gp,3g2,mj2, from '/content/DeepMosaics/imgs/MIDD-817(1a).mp4': Metadata: major_brand : mp42 minor_version : 0 compatible_brands: mp41isom creation_time : 2020-02-12T18:31:23.000000Z Duration: 00:29:00.67, start: 0.000000, bitrate: 3902 kb/s Stream #0:0(und): Video: h264 (Main) (avc1 / 0x31637661), yuv420p(tv), 1920x1080 [SAR 1:1 DAR 16:9], 3707 kb/s, 30 fps, 30 tbr, 30k tbn, 60 tbc (default) Metadata: creation_time : 2021-07-27T15:07:05.000000Z handler_name : VideoHandler encoder : AVC Coding Stream #0:1(und): Audio: aac (LC) (mp4a / 0x6134706D), 48000 Hz, stereo, fltp, 192 kb/s (default) Metadata: creation_time : 2021-07-27T15:07:05.000000Z handler_name : SoundHandler Stream mapping: Stream #0:0 -> #0:0 (h264 (native) -> mjpeg (native)) Press [q] to stop, [?] for help [swscaler @ 0x55a76142c000] deprecated pixel format used, make sure you did set range correctly Output #0, image2, to './tmp/DeepMosaics_temp/video2image/output_%06d.jpg': Metadata: major_brand : mp42 minor_version : 0 compatible_brands: mp41isom encoder : Lavf57.83.100 Stream #0:0(und): Video: mjpeg, yuvj420p(pc), 1920x1080 [SAR 1:1 DAR 16:9], q=2-31, 200 kb/s, 30 fps, 30 tbn, 30 tbc (default) Metadata: creation_time : 2021-07-27T15:07:05.000000Z handler_name : VideoHandler encoder : Lavc57.107.100 mjpeg Side data: cpb: bitrate max/min/avg: 0/0/200000 buffer size: 0 vbv_delay: -1 frame=52220 fps= 52 q=0.0 Lsize=N/A time=00:29:00.66 bitrate=N/A speed=1.73x
    video:5994909kB audio:0kB subtitle:0kB other streams:0kB global headers:0kB muxing overhead: unknown Step:2/4 -- Find mosaic location 52220/52220 [###################################] 100.00% 00:35:41/00:35:41 Optimize mosaic locations... Step:3/4 -- Clean Mosaic: 52220/52220 [###################################] 100.00% 01:22:43/01:22:43 Step:4/4 -- Convert images to video Traceback (most recent call last): File "/usr/lib/python3.7/multiprocessing/queues.py", line 242, in _feed send_bytes(obj) File "/usr/lib/python3.7/multiprocessing/connection.py", line 200, in send_bytes self._send_bytes(m[offset:offset + size]) File "/usr/lib/python3.7/multiprocessing/connection.py", line 397, in _send_bytes self._send(header) File "/usr/lib/python3.7/multiprocessing/connection.py", line 368, in _send n = write(self._handle, buf) BrokenPipeError: [Errno 32] Broken pipe Traceback (most recent call last): File "/usr/lib/python3.7/multiprocessing/queues.py", line 242, in _feed send_bytes(obj) File "/usr/lib/python3.7/multiprocessing/connection.py", line 200, in send_bytes self._send_bytes(m[offset:offset + size]) File "/usr/lib/python3.7/multiprocessing/connection.py", line 397, in _send_bytes self._send(header) File "/usr/lib/python3.7/multiprocessing/connection.py", line 368, in _send n = write(self._handle, buf) BrokenPipeError: [Errno 32] Broken pipe Traceback (most recent call last): File "/usr/lib/python3.7/multiprocessing/queues.py", line 242, in _feed send_bytes(obj) File "/usr/lib/python3.7/multiprocessing/connection.py", line 200, in send_bytes self._send_bytes(m[offset:offset + size]) File "/usr/lib/python3.7/multiprocessing/connection.py", line 397, in _send_bytes self._send(header) File "/usr/lib/python3.7/multiprocessing/connection.py", line 368, in _send n = write(self._handle, buf) BrokenPipeError: [Errno 32] Broken pipe Traceback (most recent call last): File "/usr/lib/python3.7/multiprocessing/queues.py", line 242, in _feed send_bytes(obj) File "/usr/lib/python3.7/multiprocessing/connection.py", line 200, in send_bytes self._send_bytes(m[offset:offset + size]) File "/usr/lib/python3.7/multiprocessing/connection.py", line 397, in _send_bytes self._send(header) File "/usr/lib/python3.7/multiprocessing/connection.py", line 368, in _send n = write(self._handle, buf) BrokenPipeError: [Errno 32] Broken pipe Exception in thread Thread-52222: Traceback (most recent call last): File "/usr/lib/python3.7/threading.py", line 926, in _bootstrap_inner self.run() File "/usr/lib/python3.7/threading.py", line 870, in run self._target(*self._args, **self._kwargs) File "/content/DeepMosaics/cores/clean.py", line 183, in write_result save_ori,imagepath,img_origin,img_fake,x,y,size = write_pool.get() File "/usr/lib/python3.7/multiprocessing/queues.py", line 94, in get res = self._recv_bytes() File "/usr/lib/python3.7/multiprocessing/connection.py", line 212, in recv_bytes self._check_closed() File "/usr/lib/python3.7/multiprocessing/connection.py", line 136, in _check_closed raise OSError("handle is closed") OSError: handle is closed

    ffmpeg version 3.4.8-0ubuntu0.2 Copyright (c) 2000-2020 the FFmpeg developers built with gcc 7 (Ubuntu 7.5.0-3ubuntu1~18.04) configuration: --prefix=/usr --extra-version=0ubuntu0.2 --toolchain=hardened --libdir=/usr/lib/x86_64-linux-gnu --incdir=/usr/include/x86_64-linux-gnu --enable-gpl --disable-stripping --enable-avresample --enable-avisynth --enable-gnutls --enable-ladspa --enable-libass --enable-libbluray --enable-libbs2b --enable-libcaca --enable-libcdio --enable-libflite --enable-libfontconfig --enable-libfreetype --enable-libfribidi --enable-libgme --enable-libgsm --enable-libmp3lame --enable-libmysofa --enable-libopenjpeg --enable-libopenmpt --enable-libopus --enable-libpulse --enable-librubberband --enable-librsvg --enable-libshine --enable-libsnappy --enable-libsoxr --enable-libspeex --enable-libssh --enable-libtheora --enable-libtwolame --enable-libvorbis --enable-libvpx --enable-libwavpack --enable-libwebp --enable-libx265 --enable-libxml2 --enable-libxvid --enable-libzmq --enable-libzvbi --enable-omx --enable-openal --enable-opengl --enable-sdl2 --enable-libdc1394 --enable-libdrm --enable-libiec61883 --enable-chromaprint --enable-frei0r --enable-libopencv --enable-libx264 --enable-shared libavutil 55. 78.100 / 55. 78.100 libavcodec 57.107.100 / 57.107.100 libavformat 57. 83.100 / 57. 83.100 libavdevice 57. 10.100 / 57. 10.100 libavfilter 6.107.100 / 6.107.100 libavresample 3. 7. 0 / 3. 7. 0 libswscale 4. 8.100 / 4. 8.100 libswresample 2. 9.100 / 2. 9.100 libpostproc 54. 7.100 / 54. 7.100 [mjpeg @ 0x55bac588ca00] EOI missing, emulating Input #0, image2, from './tmp/DeepMosaics_temp/replace_mosaic/output_%06d.jpg': Duration: 00:34:48.64, start: 0.000000, bitrate: N/A Stream #0:0: Video: mjpeg, yuvj420p(pc, bt470bg/unknown/unknown), 1920x1080 [SAR 1:1 DAR 16:9], 25 fps, 25 tbr, 25 tbn, 25 tbc Stream mapping: Stream #0:0 -> #0:0 (mjpeg (native) -> h264 (libx264)) Press [q] to stop, [?] for help [libx264 @ 0x55bac588de00] using SAR=1/1 [libx264 @ 0x55bac588de00] using cpu capabilities: MMX2 SSE2Fast SSSE3 SSE4.2 AVX FMA3 BMI2 AVX2 [libx264 @ 0x55bac588de00] profile High, level 4.0 [libx264 @ 0x55bac588de00] 264 - core 152 r2854 e9a5903 - H.264/MPEG-4 AVC codec - Copyleft 2003-2017 - http://www.videolan.org/x264.html - options: cabac=1 ref=3 deblock=1:0:0 analyse=0x3:0x113 me=hex subme=7 psy=1 psy_rd=1.00:0.00 mixed_ref=1 me_range=16 chroma_me=1 trellis=1 8x8dct=1 cqm=0 deadzone=21,11 fast_pskip=1 chroma_qp_offset=-2 threads=3 lookahead_threads=1 sliced_threads=0 nr=0 decimate=1 interlaced=0 bluray_compat=0 constrained_intra=0 bframes=3 b_pyramid=2 b_adapt=1 b_bias=0 direct=1 weightb=1 open_gop=0 weightp=2 keyint=250 keyint_min=25 scenecut=40 intra_refresh=0 rc_lookahead=40 rc=crf mbtree=1 crf=23.0 qcomp=0.60 qpmin=0 qpmax=69 qpstep=4 ip_ratio=1.40 aq=1:1.00 Output #0, mp4, to './tmp/DeepMosaics_temp/video_tmp.mp4': Metadata: encoder : Lavf57.83.100 Stream #0:0: Video: h264 (libx264) (avc1 / 0x31637661), yuvj420p(pc), 1920x1080 [SAR 1:1 DAR 16:9], q=-1--1, 30 fps, 15360 tbn, 30 tbc Metadata: encoder : Lavc57.107.100 libx264 Side data: cpb: bitrate max/min/avg: 0/0/0 buffer size: 0 vbv_delay: -1 frame=52216 fps=6.8 q=-1.0 Lsize= 953084kB time=00:29:00.43 bitrate=4486.0kbits/s speed=0.228x
    video:952465kB audio:0kB subtitle:0kB other streams:0kB global headers:0kB muxing overhead: 0.064936% [libx264 @ 0x55bac588de00] frame I:272 Avg QP:19.24 size: 58788 [libx264 @ 0x55bac588de00] frame P:13709 Avg QP:22.37 size: 33376 [libx264 @ 0x55bac588de00] frame B:38235 Avg QP:24.08 size: 13124 [libx264 @ 0x55bac588de00] consecutive B-frames: 1.8% 0.5% 3.4% 94.3% [libx264 @ 0x55bac588de00] mb I I16..4: 31.2% 64.6% 4.2% [libx264 @ 0x55bac588de00] mb P I16..4: 19.8% 31.7% 0.7% P16..4: 27.7% 7.5% 1.8% 0.0% 0.0% skip:10.9% [libx264 @ 0x55bac588de00] mb B I16..4: 4.3% 6.8% 0.1% B16..8: 40.9% 4.0% 0.3% direct: 2.0% skip:41.6% L0:55.9% L1:41.1% BI: 3.0% [libx264 @ 0x55bac588de00] 8x8 transform intra:60.8% inter:90.6% [libx264 @ 0x55bac588de00] coded y,uvDC,uvAC intra: 30.0% 61.4% 4.8% inter: 8.4% 19.9% 0.2% [libx264 @ 0x55bac588de00] i16 v,h,dc,p: 29% 26% 15% 30% [libx264 @ 0x55bac588de00] i8 v,h,dc,ddl,ddr,vr,hd,vl,hu: 32% 24% 31% 2% 2% 2% 2% 2% 2% [libx264 @ 0x55bac588de00] i4 v,h,dc,ddl,ddr,vr,hd,vl,hu: 36% 20% 13% 3% 8% 8% 6% 4% 2% [libx264 @ 0x55bac588de00] i8c dc,h,v,p: 42% 25% 27% 5% [libx264 @ 0x55bac588de00] Weighted P-Frames: Y:0.8% UV:0.7% [libx264 @ 0x55bac588de00] ref P L0: 68.0% 8.8% 17.5% 5.7% 0.0% [libx264 @ 0x55bac588de00] ref B L0: 90.9% 7.4% 1.6% [libx264 @ 0x55bac588de00] ref B L1: 96.0% 4.0% [libx264 @ 0x55bac588de00] kb/s:4482.87 sh: 1: Syntax error: "(" unexpected Clean temp... Finished!

    opened by calvin360 1
  • test video error!

    test video error!

    when I tese my own videos,the error occur in the last step:

    ./tmp/DeepMosaics_temp/voice_tmp.mp3: No such file or directory

    and this error only occured in several of videos! I want to konw the reasons! thank you!

    opened by yanganlan0310 1
  • dependence error on caffe2_detectron_ops_gpu.dll

    dependence error on caffe2_detectron_ops_gpu.dll

    On x64 win10 and 11, I got the follow error even if I only try the CPU version. I have installed VC_redist.x64.exe while win 11 is a clean system.

    [WinError 126] The specified module could not be found. Error loading "C:\Users\vm\Downloads\DeepMosaics_0.5.1_gpu\core\torch\lib\caffe2_detectron_ops_gpu.dll" or one of its dependencies.

    opened by funnymoon-ddsun 1
  • Could not run with video trained models

    Could not run with video trained models

    Please refer the log as following. I've tried both in GUI and shell, given the same error. Other models without 'video' in filename could run properly.

    D:\DeepMosaics_0.5.1_gpu\core\torchvision\__init__.py:26: UserWarning: You are importing torchvision within its own root folder (D:\DeepMosaics_0.5.1_gpu\core). This is not expected to work and may give errors. Please exit the torchvision project source and relaunch your python interpreter.
    segment parameters: 12.4M
    netG parameters: 26.65M
    --------------------ERROR--------------------
    --------------Environment--------------
    DeepMosaics: 0.5.1
    Python: 3.7.3 (default, Apr 24 2019, 15:29:51) [MSC v.1915 64 bit (AMD64)]
    Pytorch: 1.7.1
    OpenCV: 4.1.2
    Platform: Windows-10-10.0.22621-SP0
    --------------BUG--------------
    Error Type: <class 'RuntimeError'>
    Error(s) in loading state_dict for BVDNet:
            Missing key(s) in state_dict: "encoder3d.model.0.weight_orig", "encoder3d.model.0.weight", "encoder3d.model.0.weight_u", "encoder3d.model.0.bias", "encoder3d.model.0.weight_orig", "encoder3d.model.0.weight_u", "encoder3d.model.0.weight_v", "encoder3d.model.2.weight_orig", "encoder3d.model.2.weight", "encoder3d.model.2.weight_u", "encoder3d.model.2.bias", "encoder3d.model.2.weight_orig", "encoder3d.model.2.weight_u", "encoder3d.model.2.weight_v", "encoder3d.model.4.weight_orig", "encoder3d.model.4.weight", "encoder3d.model.4.weight_u", "encoder3d.model.4.bias", "encoder3d.model.4.weight_orig", "encoder3d.model.4.weight_u", "encoder3d.model.4.weight_v", "encoder3d.model.6.weight_orig", "encoder3d.model.6.weight", "encoder3d.model.6.weight_u", "encoder3d.model.6.bias", "encoder3d.model.6.weight_orig", "encoder3d.model.6.weight_u", "encoder3d.model.6.weight_v", "encoder2d.model.1.weight_orig", "encoder2d.model.1.weight", "encoder2d.model.1.weight_u", "encoder2d.model.1.bias", "encoder2d.model.1.weight_orig", "encoder2d.model.1.weight_u", "encoder2d.model.1.weight_v", "encoder2d.model.4.weight_orig", "encoder2d.model.4.weight", "encoder2d.model.4.weight_u", "encoder2d.model.4.bias", "encoder2d.model.4.weight_orig", "encoder2d.model.4.weight_u", "encoder2d.model.4.weight_v", "encoder2d.model.7.weight_orig", "encoder2d.model.7.weight", "encoder2d.model.7.weight_u", "encoder2d.model.7.bias", "encoder2d.model.7.weight_orig", "encoder2d.model.7.weight_u", "encoder2d.model.7.weight_v", "encoder2d.model.10.weight_orig", "encoder2d.model.10.weight", "encoder2d.model.10.weight_u", "encoder2d.model.10.bias", "encoder2d.model.10.weight_orig", "encoder2d.model.10.weight_u", "encoder2d.model.10.weight_v", "blocks.0.conv_block.1.weight_orig", "blocks.0.conv_block.1.weight", "blocks.0.conv_block.1.weight_u", "blocks.0.conv_block.1.bias", "blocks.0.conv_block.1.weight_orig", "blocks.0.conv_block.1.weight_u", "blocks.0.conv_block.1.weight_v", "blocks.0.conv_block.4.weight_orig", "blocks.0.conv_block.4.weight", "blocks.0.conv_block.4.weight_u", "blocks.0.conv_block.4.bias", "blocks.0.conv_block.4.weight_orig", "blocks.0.conv_block.4.weight_u", "blocks.0.conv_block.4.weight_v", "blocks.1.conv_block.1.weight_orig", "blocks.1.conv_block.1.weight", "blocks.1.conv_block.1.weight_u", "blocks.1.conv_block.1.bias", "blocks.1.conv_block.1.weight_orig", "blocks.1.conv_block.1.weight_u", "blocks.1.conv_block.1.weight_v", "blocks.1.conv_block.4.weight_orig", "blocks.1.conv_block.4.weight", "blocks.1.conv_block.4.weight_u", "blocks.1.conv_block.4.bias", "blocks.1.conv_block.4.weight_orig", "blocks.1.conv_block.4.weight_u", "blocks.1.conv_block.4.weight_v", "blocks.2.conv_block.1.weight_orig", "blocks.2.conv_block.1.weight", "blocks.2.conv_block.1.weight_u", "blocks.2.conv_block.1.bias", "blocks.2.conv_block.1.weight_orig", "blocks.2.conv_block.1.weight_u", "blocks.2.conv_block.1.weight_v", "blocks.2.conv_block.4.weight_orig", "blocks.2.conv_block.4.weight", "blocks.2.conv_block.4.weight_u", "blocks.2.conv_block.4.bias", "blocks.2.conv_block.4.weight_orig", "blocks.2.conv_block.4.weight_u", "blocks.2.conv_block.4.weight_v", "blocks.3.conv_block.1.weight_orig", "blocks.3.conv_block.1.weight", "blocks.3.conv_block.1.weight_u", "blocks.3.conv_block.1.bias", "blocks.3.conv_block.1.weight_orig", "blocks.3.conv_block.1.weight_u", "blocks.3.conv_block.1.weight_v", "blocks.3.conv_block.4.weight_orig", "blocks.3.conv_block.4.weight", "blocks.3.conv_block.4.weight_u", "blocks.3.conv_block.4.bias", "blocks.3.conv_block.4.weight_orig", "blocks.3.conv_block.4.weight_u", "blocks.3.conv_block.4.weight_v", "decoder.0.convup.2.weight_orig", "decoder.0.convup.2.weight", "decoder.0.convup.2.weight_u", "decoder.0.convup.2.bias", "decoder.0.convup.2.weight_orig", "decoder.0.convup.2.weight_u", "decoder.0.convup.2.weight_v", "decoder.1.convup.2.weight_orig", "decoder.1.convup.2.weight", "decoder.1.convup.2.weight_u", "decoder.1.convup.2.bias", "decoder.1.convup.2.weight_orig", "decoder.1.convup.2.weight_u", "decoder.1.convup.2.weight_v", "decoder.2.convup.2.weight_orig", "decoder.2.convup.2.weight", "decoder.2.convup.2.weight_u", "decoder.2.convup.2.bias", "decoder.2.convup.2.weight_orig", "decoder.2.convup.2.weight_u", "decoder.2.convup.2.weight_v", "decoder.4.weight", "decoder.4.bias".
            Unexpected key(s) in state_dict: "encoder_2d.model.1.weight", "encoder_2d.model.1.bias", "encoder_2d.model.5.weight", "encoder_2d.model.5.bias", "encoder_2d.model.9.weight", "encoder_2d.model.9.bias", "encoder_2d.model.13.weight", "encoder_2d.model.13.bias", "encoder_2d.model.17.weight", "encoder_2d.model.17.bias", "encoder_3d.inconv.conv.0.weight", "encoder_3d.inconv.conv.0.bias", "encoder_3d.down1.conv.0.weight", "encoder_3d.down1.conv.0.bias", "encoder_3d.down2.conv.0.weight", "encoder_3d.down2.conv.0.bias", "encoder_3d.down3.conv.0.weight", "encoder_3d.down3.conv.0.bias", "encoder_3d.down4.conv.0.weight", "encoder_3d.down4.conv.0.bias", "decoder_2d.model.0.conv_block.1.weight", "decoder_2d.model.0.conv_block.1.bias", "decoder_2d.model.0.conv_block.5.weight", "decoder_2d.model.0.conv_block.5.bias", "decoder_2d.model.1.conv_block.1.weight", "decoder_2d.model.1.conv_block.1.bias", "decoder_2d.model.1.conv_block.5.weight", "decoder_2d.model.1.conv_block.5.bias", "decoder_2d.model.2.conv_block.1.weight", "decoder_2d.model.2.conv_block.1.bias", "decoder_2d.model.2.conv_block.5.weight", "decoder_2d.model.2.conv_block.5.bias", "decoder_2d.model.3.conv_block.1.weight", "decoder_2d.model.3.conv_block.1.bias", "decoder_2d.model.3.conv_block.5.weight", "decoder_2d.model.3.conv_block.5.bias", "decoder_2d.model.4.conv_block.1.weight", "decoder_2d.model.4.conv_block.1.bias", "decoder_2d.model.4.conv_block.5.weight", "decoder_2d.model.4.conv_block.5.bias", "decoder_2d.model.5.conv_block.1.weight", "decoder_2d.model.5.conv_block.1.bias", "decoder_2d.model.5.conv_block.5.weight", "decoder_2d.model.5.conv_block.5.bias", "decoder_2d.model.6.conv_block.1.weight", "decoder_2d.model.6.conv_block.1.bias", "decoder_2d.model.6.conv_block.5.weight", "decoder_2d.model.6.conv_block.5.bias", "decoder_2d.model.7.conv_block.1.weight", "decoder_2d.model.7.conv_block.1.bias", "decoder_2d.model.7.conv_block.5.weight", "decoder_2d.model.7.conv_block.5.bias", "decoder_2d.model.8.conv_block.1.weight", "decoder_2d.model.8.conv_block.1.bias", "decoder_2d.model.8.conv_block.5.weight", "decoder_2d.model.8.conv_block.5.bias", "decoder_2d.model.9.weight", "decoder_2d.model.9.bias", "decoder_2d.model.12.weight", "decoder_2d.model.12.bias", "decoder_2d.model.15.weight", "decoder_2d.model.15.bias", "decoder_2d.model.18.weight", "decoder_2d.model.18.bias", "decoder_2d.model.22.weight", "decoder_2d.model.22.bias", "merge1.conv.1.weight", "merge1.conv.1.bias".
    <FrameSummary file deepmosaic.py, line 77 in <module>>
    <FrameSummary file deepmosaic.py, line 41 in main>
    <FrameSummary file models\loadmodel.py, line 56 in video>
    <FrameSummary file torch\nn\modules\module.py, line 1052 in load_state_dict>
    Please press any key to exit.
    
    opened by vxfranky 0
  • GPU source code never finds mosaic

    GPU source code never finds mosaic

    I have using the CPU GUI version .exe file that works, but so slow. I have wanted to get the GPU command prompt version to work as the GUI version.exe kept getting errors that DeepMosaics said where too complicated on another post. After getting the command prompt version to work, the video output is the same as the input. There is no error while running the source code.

    While using source code GPU version when step two starts the python program goes to not responding. After 15 minutes it will work again, but never finds any mosaic. The program runs without any errors. The only thing I can think off is my CPU is too weak and is causing the not responding on start of step two.

    opened by heartingNinja 0
  • Source Code GPU not seeing mosaic

    Source Code GPU not seeing mosaic

    I have using the CPU GUI version .exe file that works, but so slow. I have wanted to get the GPU command prompt version to work as the GUI version.exe kept getting errors that DeepMosaics said where too complicated on another post. After getting the command prompt version to work, the video output is the same as the input. There is no error while running the source code.

    While using source code GPU version when step two starts the python program goes to not responding. After 15 minutes it will work again but never finds the mosaic. The only thing I can think off is my CPU is too weak and is causing the not responding on start of step two.

    opened by heartingNinja 0
  • Regarding the empty train_A and train_B folders generated when creating the Clean mosaic dataset. Solution.

    Regarding the empty train_A and train_B folders generated when creating the Clean mosaic dataset. Solution.

    make_pix2pix_dataset.pyを実行すると発生しました。このpyファイルを調べてみると、108行目から152行目まで余分なインデントが1つあることがわかりました。これをインデント1つ分削除して修正します。

    また、私の場合、最初はインデントを消しても画像が生成されなかったので、品質オプションを20にしたところ、train_Aフォルダにモザイクをかけた画像が、train_Bフォルダに元画像が格納されるようになりました。

    おそらく、私の動画の画質が悪すぎて、フィルタリングされていたのでしょう。やっと解決しましたー。 ちなみにimage_processing.pyを見ると、(quality)>20が正常で、argオプションのデフォルト設定は40と書いてあります。

    opened by mossan0101 0
Releases(v0.5.1)
Owner
Hypo
An indie developer / Focus on DL&DSP.
Hypo
Camelot: PDF Table Extraction for Humans

Camelot: PDF Table Extraction for Humans Camelot is a Python library that makes it easy for anyone to extract tables from PDF files! Note: You can als

Atlan Technologies Pvt Ltd 3.3k Dec 31, 2022
Bu uygulamada Python ve Opencv kullanarak bilgisayar kamerasından yüz tespiti yapıyoruz.

opencv_yuz_bulma Bu uygulamada Python ve Opencv kullanarak bilgisayar kamerasından yüz tespiti yapıyoruz. Bilgisarın kendi kamerasını kullanmak için;

Ahmet Haydar Ornek 6 Apr 16, 2022
Go package for OCR (Optical Character Recognition), by using Tesseract C++ library

gosseract OCR Golang OCR package, by using Tesseract C++ library. OCR Server Do you just want OCR server, or see the working example of this package?

Hiromu OCHIAI 1.9k Dec 28, 2022
Introduction to image processing, most used and popular functions of OpenCV

👀 OpenCV 101 Introduction to image processing, most used and popular functions of OpenCV go here.

Vusal Ismayilov 3 Jul 02, 2022
Automatic Number Plate Recognition (ANPR) is a highly accurate system capable of reading vehicle number plates without human intervention

ANPR ANPR is therefore the underlying technology used to find a vehicle license/number plate and it, in turn, supplies this information to a next stag

Melih Emin Kılıçoğlu 1 Jan 09, 2022
Select range and every time the screen changes, OCR is activated.

ASOCR(Auto Screen OCR) Select range and every time you press Space key, OCR is activated. 範囲を選ぶと、あなたがスペースキーを押すたびに、画面が変わる度にOCRが起動します。 usage1: simple OC

1 Feb 13, 2022
This is the implementation of the paper "Gated Recurrent Convolution Neural Network for OCR"

Gated Recurrent Convolution Neural Network for OCR This project is an implementation of the GRCNN for OCR. For details, please refer to the paper: htt

90 Dec 22, 2022
A facial recognition device is a device that takes an image or a video of a human face and compares it to another image faces in a database.

A facial recognition device is a device that takes an image or a video of a human face and compares it to another image faces in a database. The structure, shape and proportions of the faces are comp

Pavankumar Khot 4 Mar 19, 2022
📷 This repository is focused on having various feature implementation of OpenCV in Python.

📷 This repository is focused on having various feature implementation of OpenCV in Python. The aim is to have a minimal implementation of all OpenCV features together, under one roof.

Aditya Kumar Gupta 128 Dec 04, 2022
Recognizing the text contents from a scanned visiting card

Recognizing the text contents from a scanned visiting card. The application which is used to recognize the text from scanned images,printeddocuments,r

Faizan Habib 1 Jan 28, 2022
TextBoxes re-implement using tensorflow

TextBoxes-TensorFlow TextBoxes re-implementation using tensorflow. This project is greatly inspired by slim project And many functions are modified ba

Gu Xiaodong 44 Dec 29, 2022
PyNeuro is designed to connect NeuroSky's MindWave EEG device to Python and provide Callback functionality to provide data to your application in real time.

PyNeuro PyNeuro is designed to connect NeuroSky's MindWave EEG device to Python and provide Callback functionality to provide data to your application

Zach Wang 45 Dec 30, 2022
Um simples projeto para fazer o reconhecimento do captcha usado pelo jogo bombcrypto

CaptchaSolver - LEIA ISSO 😓 Para iniciar o codigo: pip install -r requirements.txt python captcha_solver.py Se você deseja pegar ver o resultado das

Kawanderson 50 Mar 21, 2022
Multi-Oriented Scene Text Detection via Corner Localization and Region Segmentation

This is the official implementation of "Multi-Oriented Scene Text Detection via Corner Localization and Region Segmentation". For more details, please

Pengyuan Lyu 309 Dec 06, 2022
Um RPG de texto orientado a objetos.

RPG de texto Um RPG de texto orientado a objetos, sem história. Um RPG (Role-playing game) baseado em texto em que você pode viajar para alguns locais

Vinicius 3 Oct 05, 2022
Packaged, Pytorch-based, easy to use, cross-platform version of the CRAFT text detector

CRAFT: Character-Region Awareness For Text detection Packaged, Pytorch-based, easy to use, cross-platform version of the CRAFT text detector | Paper |

188 Dec 28, 2022
A tool combining EasyOCR and LaMa to automatically detect text and replace it with an inpainted background.

EasyLaMa (WIP) This is a tool combining EasyOCR and LaMa to automatically detect text and replace it with an inpainted background. Installation For GP

3 Sep 17, 2022
OpenCVを用いたカメラキャリブレーションのサンプルです。2021/06/21時点でPython実装のある3種類(通常カメラ向け、魚眼レンズ向け(fisheyeモジュール)、全方位カメラ向け(omnidirモジュール))について用意しています。

OpenCV-CameraCalibration-Example FishEyeCameraCalibration.mp4 OpenCVを用いたカメラキャリブレーションのサンプルです 2021/06/21時点でPython実装のある以下3種類について用意しています。 通常カメラ向け 魚眼レンズ向け(

KazuhitoTakahashi 34 Nov 17, 2022
Pre-Recognize Library - library with algorithms for improving OCR quality.

PRLib - Pre-Recognition Library. The main aim of the library - prepare image for recogntion. Image processing can really help to improve recognition q

Alex 80 Dec 30, 2022
A python screen recorder for low-end computers, provides high quality video output.

RecorderX - v1.0 A screen recorder made in Python with the help of OpenCv, it has ability to record your screen in high quality. No matter what your P

Priyanshu Jindal 4 Nov 10, 2021