[BMVC2021] "TransFusion: Cross-view Fusion with Transformer for 3D Human Pose Estimation"

Overview

TransFusion-Pose

TransFusion: Cross-view Fusion with Transformer for 3D Human Pose Estimation
Haoyu Ma, Liangjian Chen, Deying Kong, Zhe Wang, Xingwei Liu, Hao Tang, Xiangyi Yan, Yusheng Xie, Shih-Yao Lin and Xiaohui Xie
In BMVC 2021
[Paper] [Video]

Overview

  • We propose the TransFusion, which apply the transformer architecture to multi-view 3D human pose estimation
  • We propose the Epipolar Field, a novel and more general form of epipolar line. It readily integrates with the transformer through our proposed geometry positional encoding to encode the 3D relationships among different views.
  • Extensive experiments are conducted to demonstrate that our TransFusion outperforms previous fusion methods on both Human 3.6M and SkiPose datasets, but requires substantially fewer parameters.

TransFusion

Epipolar Field

Installation

  1. Clone this repo, and we'll call the directory that you cloned multiview-pose as ${POSE_ROOT}
git clone https://github.com/HowieMa/TransFusion-Pose.git
  1. Install dependencies.
pip install -r requirements.txt
  1. Download TransPose models pretrained on COCO.
wget https://github.com/yangsenius/TransPose/releases/download/Hub/tp_r_256x192_enc3_d256_h1024_mh8.pth

You can also download it from the official website of TransPose

Please download them under ${POSE_ROOT}/models, and make them look like this:

${POSE_ROOT}/models
└── pytorch
    └── coco
        └── tp_r_256x192_enc3_d256_h1024_mh8.pth

Data preparation

Human 3.6M

For Human36M data, please follow H36M-Toolbox to prepare images and annotations.

Ski-Pose

For Ski-Pose, please follow the instruction from their website to obtain the dataset.
Once you download the Ski-PosePTZ-CameraDataset-png.zip and ski_centers.csv, unzip them and put into the same folder, named as ${SKI_ROOT}.
Run python data/preprocess_skipose.py ${SKI_ROOT} to format it.

Your folder should look like this:

${POSE_ROOT}
|-- data
|-- |-- h36m
    |-- |-- annot
        |   |-- h36m_train.pkl
        |   |-- h36m_validation.pkl
        |-- images
            |-- s_01_act_02_subact_01_ca_01 
            |-- s_01_act_02_subact_01_ca_02

|-- |-- preprocess_skipose.py
|-- |-- skipose  
    |-- |-- annot
        |   |-- ski_train.pkl
        |   |-- ski_validation.pkl
        |-- images
            |-- seq_103 
            |-- seq_103

Training and Testing

Human 3.6M

# Training
python run/pose2d/train.py --cfg experiments-local/h36m/transpose/256_fusion_enc3_GPE.yaml --gpus 0,1,2,3

# Evaluation (2D)
python run/pose2d/valid.py --cfg experiments-local/h36m/transpose/256_fusion_enc3_GPE.yaml --gpus 0,1,2,3  

# Evaluation (3D)
python run/pose3d/estimate_tri.py --cfg experiments-local/h36m/transpose/256_fusion_enc3_GPE.yaml

Ski-Pose

# Training
python run/pose2d/train.py --cfg experiments-local/skipose/transpose/256_fusion_enc3_GPE.yaml --gpus 0,1,2,3

# Evaluation (2D)
python run/pose2d/valid.py --cfg experiments-local/skipose/transpose/256_fusion_enc3_GPE.yaml --gpus 0,1,2,3

# Evaluation (3D)
python run/pose3d/estimate_tri.py --cfg experiments-local/skipose/transpose/256_fusion_enc3_GPE.yaml

Our trained models can be downloaded from here

Citation

If you find our code helps your research, please cite the paper:

@inproceedings{ma2021transfusion,
  title={TransFusion: Cross-view Fusion with Transformer for 3D Human Pose Estimation},
  author={Ma, Haoyu and Chen, Liangjian and Kong, Deying and Wang, Zhe and Liu, Xingwei and Tang, Hao and Yan, Xiangyi and Xie, Yusheng and Lin, Shih-Yao and Xie, Xiaohui},
  booktitle={British Machine Vision Conference},
  year={2021}
}

Acknowledgement

Owner
Haoyu Ma
3rd year CS Ph.D. @ UC, Irvine
Haoyu Ma
Pixel-wise segmentation on VOC2012 dataset using pytorch.

PiWiSe Pixel-wise segmentation on the VOC2012 dataset using pytorch. FCN SegNet PSPNet UNet RefineNet For a more complete implementation of segmentati

Bodo Kaiser 378 Dec 30, 2022
Campsite Reservation Finder

yellowstone-camping UPDATE: yellowstone-camping is being expanded and renamed to camply. The updated tool now interfaces with the Recreation.gov API a

Justin Flannery 233 Jan 08, 2023
minimizer-space de Bruijn graphs (mdBG) for whole genome assembly

rust-mdbg: Minimizer-space de Bruijn graphs (mdBG) for whole-genome assembly rust-mdbg is an ultra-fast minimizer-space de Bruijn graph (mdBG) impleme

Barış Ekim 148 Dec 01, 2022
Official code release for ICCV 2021 paper SNARF: Differentiable Forward Skinning for Animating Non-rigid Neural Implicit Shapes.

Official code release for ICCV 2021 paper SNARF: Differentiable Forward Skinning for Animating Non-rigid Neural Implicit Shapes.

235 Dec 26, 2022
LVI-SAM: Tightly-coupled Lidar-Visual-Inertial Odometry via Smoothing and Mapping

LVI-SAM This repository contains code for a lidar-visual-inertial odometry and mapping system, which combines the advantages of LIO-SAM and Vins-Mono

Tixiao Shan 1.1k Dec 27, 2022
This folder contains the python code of UR5E's advanced forward kinematics model.

This folder contains the python code of UR5E's advanced forward kinematics model. By entering the angle of the joint of UR5e, the detailed coordinates of up to 48 points around the robot arm can be c

Qiang Wang 4 Sep 17, 2022
Pytorch implementation of YOLOX、PPYOLO、PPYOLOv2、FCOS an so on.

简体中文 | English miemiedetection 概述 miemiedetection是女装大佬咩酱基于YOLOX进行二次开发的个人检测库(使用的深度学习框架为pytorch),支持Windows、Linux系统,以女装大佬咩酱的名字命名。miemiedetection是一个不需要安装的

248 Jan 02, 2023
This is the repository for the AAAI 21 paper [Contrastive and Generative Graph Convolutional Networks for Graph-based Semi-Supervised Learning].

CG3 This is the repository for the AAAI 21 paper [Contrastive and Generative Graph Convolutional Networks for Graph-based Semi-Supervised Learning]. R

12 Oct 28, 2022
Implementation of CrossViT: Cross-Attention Multi-Scale Vision Transformer for Image Classification

CrossViT : Cross-Attention Multi-Scale Vision Transformer for Image Classification This is an unofficial PyTorch implementation of CrossViT: Cross-Att

Rishikesh (ऋषिकेश) 103 Nov 25, 2022
A high-level Python library for Quantum Natural Language Processing

lambeq About lambeq is a toolkit for quantum natural language processing (QNLP). Documentation: https://cqcl.github.io/lambeq/ Getting started Prerequ

Cambridge Quantum 315 Jan 01, 2023
A Large Scale Benchmark for Individual Treatment Effect Prediction and Uplift Modeling

large-scale-ITE-UM-benchmark This repository contains code and data to reproduce the results of the paper "A Large Scale Benchmark for Individual Trea

10 Nov 19, 2022
Code for weakly supervised segmentation of a single class

SingleClassRL Implementation of weak single object segmentation from paper "Regularized Loss for Weakly Supervised Single Class Semantic Segmentation"

16 Nov 14, 2022
Equivariant CNNs for the sphere and SO(3) implemented in PyTorch

Equivariant CNNs for the sphere and SO(3) implemented in PyTorch

Jonas Köhler 893 Dec 28, 2022
Instant Real-Time Example-Based Style Transfer to Facial Videos

FaceBlit: Instant Real-Time Example-Based Style Transfer to Facial Videos The official implementation of FaceBlit: Instant Real-Time Example-Based Sty

Aneta Texler 131 Dec 19, 2022
This is an official implementation for "Swin Transformer: Hierarchical Vision Transformer using Shifted Windows" on Object Detection and Instance Segmentation.

Swin Transformer for Object Detection This repo contains the supported code and configuration files to reproduce object detection results of Swin Tran

Swin Transformer 1.4k Dec 30, 2022
CUAD

Contract Understanding Atticus Dataset This repository contains code for the Contract Understanding Atticus Dataset (CUAD), a dataset for legal contra

The Atticus Project 273 Dec 17, 2022
Official implementation of "OpenPifPaf: Composite Fields for Semantic Keypoint Detection and Spatio-Temporal Association" in PyTorch.

openpifpaf Continuously tested on Linux, MacOS and Windows: New 2021 paper: OpenPifPaf: Composite Fields for Semantic Keypoint Detection and Spatio-Te

VITA lab at EPFL 50 Dec 29, 2022
Official repo for the work titled "SharinGAN: Combining Synthetic and Real Data for Unsupervised GeometryEstimation"

SharinGAN Official repo for the work titled "SharinGAN: Combining Synthetic and Real Data for Unsupervised GeometryEstimation" The official project we

Koutilya PNVR 23 Oct 19, 2022
Repository for benchmarking graph neural networks

Benchmarking Graph Neural Networks Updates Nov 2, 2020 Project based on DGL 0.4.2. See the relevant dependencies defined in the environment yml files

NTU Graph Deep Learning Lab 2k Jan 03, 2023
Supplementary code for the AISTATS 2021 paper "Matern Gaussian Processes on Graphs".

Matern Gaussian Processes on Graphs This repo provides an extension for gpflow with Matérn kernels, inducing variables and trainable models implemente

41 Dec 17, 2022