🌌 Economics Observatory Visualisation Repository

Overview

Economics Observatory Visualisation Repository

GitHub license Open in Colab GitHub last commit

Website | Visualisations | Data |

Here you will find all the data visualisations and infographics attached to our articles published on the Observatory website. Each visualisation is published under an open source MIT licence, and you are free to reuse/reproduce/redistribute, with attribution.

🌌 Visualisations

We try to follow industry best-practices in data visualisation and try to establish our very own visualisation guidelines for all chart types. You can read about these, as well as the tools we use in πŸ“ visualisation guidelines .

Date Article Repository Code
2021-06-09 What are the big economic challenges facing the new Welsh Government? folder Open in Colab
2021-05-26 Update: Are small businesses ready to compete as consumers move online? folder Open in Colab
2021-05-25 How are Covid-19 and Brexit affecting ports in Wales? folder Open in Colab
2021-05-19 What is the likely impact of advertising restrictions on obesity? folder
2021-05-17 Why should we care about obesity? folder Open in Colab
2021-05-12 What is the future of commuting to work? folder Open in Colab
2021-05-05 Update: Which firms and industries have been most affected by Covid-19? folder Open in Colab
2021-04-19 How should governments source public services during a crisis? folder Open in Colab
2021-04-14 A year in the UK labour market: what’s happened over the coronavirus pandemic? folder Open in Colab
2021-04-09 How are economic models adapting to rising inequality and the pandemic? folder Open in Colab

Nomenclature

In the world of data visualisation (even in the expert academic and professional literature) the expressions of figure, chart, plot, panel, graph, diagram, visualisation (and possibly others) are conflated and used (incorrectly?) interchangeably, sometimes with the same expression referring to completely different graphical objects under various contexts. We believe that this might cause confusion for the reader and therefore, at the Observatory, we strive to maintain the following nomenclature to refer to our graphical representations of data:

  • At the Observatory, we publish articles.
  • Each article may contain several figures.
  • Each figure may contain several charts. Sometimes we call these charts panels. For example, imagine a horizontal figure that contains two line charts, side-by-side. We might call these components Figure 1 chart a and refer to it as Figure 1 panel a, or just simply Figure 1a.
  • Each chart may be composed of multiple visualisations. For example, a line chart might also have points highlighting and delimiting its segments. In this case, we would have a line plot and a scatter plot visualisation layered on top of each other, composing the chart. To add to your confusion, we sometimes may call these components simply line chart or scatter chart instead of plot, but in this case we actually refer to the visualisations themselves - as various forms of graphical data representation. We chose to stick with the visualisation name, since not all charts are plots in the classical sense: typically plot is an expression reserved in colloquial speech to refer to a line plot, scatter plot, polar plot or even a box plot, and we typically use chart for maybe a pie chart, bar chart, column chart or even candlestick chart. However, there are also more complex visualisation forms, such as a Sankey diagram, a network graph, a histogram or even beeswarm. Therefore, in order to unequivocally refer to all of these graphical data representation tpyes, we use visualisation.

To summarise:

  • Visualisations are chart components.
    • plot, graph, diagram (and depending on context chart also) simply translate to visualisation
  • Figures are made up of one or more charts (or = panels).
  • Articles may contain one of more figures.
  • The Observatory has a collection of articles.

Structure

Under articles each visualisation has their own folder, and within that folder you will find separate subfolder for the data (in csv format) , the visualisation (in json), and in some cases accompanying HTML, CSS and JavaScript. The naming convention for articles is yyyy-mm-dd- . We try to maintain that matches the URL permalink of the article from the website. We are currently transitioning this scheme to an updated one, where each folder contains a config.json file, listing all of the respective article's metadata. The cannot contain / characters.

The articles may contain figures - each composed of one or more charts. Each chart has their own (usually Vega-lite or Vega, but sometimes a D3plus or eCharts) json specification. For composite figures containing multiple charts, we may produce (depending on the tool used) a separate file for each chart (e.g. fig1 or fig2a and fig2b), but sometimes this is handled within the tool and only one file, with the composite figure (fig2) is produced. We normalize the data and compile the visualisations using the parser.ipynb Jupyter notebook.

  • The automatically generated README.md file contains a sneak peek of all the charts included in the article, in the form of static .png images and their names.
  • The raw folder contains the original data, as we have received it from the author (depending on the circumstances, this might not always be public)
  • The data folder contains the normalised data and it is typically the output of the parser.ipynb. Usually (unless data is shared between charts) there is a separate data file generated for each chart.
  • The visualisation folder contains multiple folders corresponding to the names of charting tools used (e.g. vega-lite or d3plus). Some charts may be replicated over multiple tools.
  • Each tool folder contains several theme folders (but typically two, light and dark)
  • Each theme folder contains several aspect folders (but typically two, desktop and mobile)
  • For some older charts, these subfolders under visualisation might be missing. In this case, the vega-lite tool is assumed to be used as the default, with the light theme and the desktop aspect.
  • Each full path under visualisation (e.g. visualisation/vega-lite/dark/desktop) contains:
    • A .json (or .js for the case of D3plus and some other tools) file for each chart (typically one for each figure in the article, but composite figures may be split over multiple charts). This is is what is typically called the chart specification or the chart config.
    • An automatically generated .HTML file for direct embedding. This uses additional JavaScript code to offer a full-fledged HTML page with the data visualisation working out of the box. This is useful in some cases, when problems with directly embedding the chart specification may arise.
    • Whenever data compatibility issues are likely to arise, or the data cannot be formatted using simple in-memory data manipulation techniques (e.g. Vega data transforms) only, we also generate a file ending in _local.json, where all data is stored as a static Javascript Object inside the chart specification json file (this is the safest but also the slowest).
    • The format of the should follow the fig1a_chart-name-with-space naming convention (with _local added at the end, as necessary). The cannot contain / characters.
  • config.json holds the article metadata (this has just been introduced recently, so it may not exist for all articles yet). It has the following keys:
    • uid: the article's unique identifier
    • name: the article's name - same as the mentioned above
    • version: version of the article (1 by default). For update type posts, this is typically larger than 1.
    • previous, next: the article uids that this article follows/precedes
    • title: human readable article title as presented on the Website / Trello (the two should match)
    • url: the published article's URL on the website
    • trello: link to the Trello card of the article
    • github: link to article's folder in this repository under /articles
    • charts: JSON list [] of s included in the article. Can contain just s - then the parent article's path is assumed - or a full path / , pointing to another article's chart.

Issues of the ECO magazine behave like articles and can be found under the magazine folder (e.g. magazine/issue-1).

Embedding

  1. You may use any of the chart specifications listed above - the "naked" or the _local versions of the s for direct embedding on compatible websites (e.g. Wordpress or Flourish).
  2. You may use the HTML files generated to overcome compatibility challenges of more stubborn hosting environments.
  3. Furthermore, we maintain a global viewer.html that can take a data source parameters as its URL hash. E.g. visiting https://economicsobservatory.github.io/ECOvisualisations/viewer.html#articles/2021-04-14-a-year-in-the-uk-labour-market-whats-happened-over-the-coronavirus-pandemic/visualisation/fig5_absent_from_work will open the viewer for Figure 5 of this article (currently, this works for charts under the vega-lite specification, but we are continuously updating it to include all of our charts, regardless of the tool used to generate it).

Option 3, using the viewer.html is the recommended way for embedding our data visualisations on other sites. This is is because if we change our repository structure and/or charting API in the future, we can ensure that all backwards compatibility with existing embedded charts is maintained, but the updates (such as a new theme) are reflected on all of our charts instantly.

You may think of this as a form of 🍨 ChaaS - chart as a service.

πŸ“Š Data

All of our chart data are published under their respective article subfolders, but on top of that we also operate the ECOdataHUB, where you will find a trove of data used in our articles and analyses, as well as interactive visualisation exploration interfaces. Whenever possible, we try to follow a TIDY format. You can read about our data zen in πŸ“ data guidelines.

πŸ’» Build

To learn about the technologies used or build a similar charts like this you can follow the instructions on the guidelines page. If you discovered any bugs or have any specific suggestions or feature requests please use the Issues page.

πŸ“§ Contact

The Economics Observatory is run out of the University of Bristol and you can read more about us here. For any technical or visualization-related questions you may contact DΓ©nes. For economics-related queries and anything else about the site content, or further collaborations, you may contact Charlie.

πŸ“° Reference

If you would like to use the site as an information source or any of the visualizations or the data presented, you are free to do so under an MIT licence (you're free to modify anything, as long you as you mention us). Furthermore, the content of all of our articles presented on the Economics Observatory website is shareable under a Creative Commons ShareAlike 4.0 license.

If you would like to refer to it in publications or other scientific works of any kind, please use the following style:

  • Title of article or chart, Economics Observatory, 2021, link to article or chart, published on: publication date, accessed on: access date
Owner
Economics Observatory
Questions and answers about coronavirus and the UK economy. Answered by experts. Told through data.
Economics Observatory
Play tic-tac-toe in PowerPoint

The presentation has around 6,000 slides representing every possible game state (and some impossible ones, since I didn't check for wins or ties). You play by clicking on the squares, which are hyper

Jesse Li 3 Dec 18, 2021
Tutor plugin for integration of Open edX with a Richie course catalog

Richie plugin for Tutor This is a plugin to integrate Richie, the learning portal CMS, with Open edX. The integration takes the form of a Tutor plugin

Overhang.IO 2 Sep 08, 2022
Just messing around with AI for fun coding πŸ˜‚

Python-AI Projects πŸ€– World Clock ⏰ βš™οΈŽ Steps to run world-clock.py file Download and open the file in your Python IDE. Run the file a type the name of

Danish Saleem 0 Feb 10, 2022
Homed - Light-weight, easily configurable, dockerized homepage

homed GitHub Repo Docker Hub homed is a light-weight customizable portal primari

Matt Walters 12 Dec 15, 2022
This project intends to take the user's CEP (brazilian adress code) and return the local in which the CEP is placed.

This project aims to simply return the CEP's (the brazilian resident adress code) User of the application. The project uses a request and passes on to

Daniel Soares Saldanha 4 Nov 17, 2021
Viewer for NFO files

NFO Viewer NFO Viewer is a simple viewer for NFO files, which are "ASCII" art in the CP437 codepage. The advantages of using NFO Viewer instead of a t

Osmo Salomaa 114 Dec 29, 2022
A collection of repositories used to realise various end-to-end high-level synthesis (HLS) flows centering around the CIRCT project.

circt-hls What is this?: A collection of repositories used to realise various end-to-end high-level synthesis (HLS) flows centering around the CIRCT p

29 Dec 14, 2022
Something like Asteroids but not really, done in CircuitPython

CircuitPython Staroids Something like Asteroids, done in CircuitPython. Works with FunHouse, MacroPad, Pybadge, EdgeBadge, CLUE, and Pygamer. circuitp

Tod E. Kurt 14 May 31, 2022
Intelligent Employer Profiling Platform.

Intelligent Employer Profiling Platform Setup Instructions Generating Model Data Ensure that Python 3.9+ and pip is installed. Install project depende

Harvey Donnelly 2 Jan 09, 2022
[CVPR 2020] Rethinking Class-Balanced Methods for Long-Tailed Visual Recognition from a Domain Adaptation Perspective

Rethinking Class-Balanced Methods for Long-Tailed Visual Recognition from a Domain Adaptation Perspective [Arxiv] This is PyTorch implementation of th

Abdullah Jamal 22 Nov 19, 2022
Sathal's Python Projects Repository

Sathal's Python Projects Repository Purpose and Motivation I come from a mainly C Programming Language background and have previous classroom experien

Sam 1 Oct 20, 2021
Choice Coin 633 Dec 23, 2022
SpellingBeeSolver - This program generates solutions to NYT style spelling bee problems.

SpellingBeeSolver This program generates solutions to NYT style spelling bee problems. The initial version of this program is being written in Python

1 Jan 01, 2022
Lightweight and Modern kernel for VK Bots

This is the kernel for creating VK Bots written in Python 3.9

Yrvijo 4 Nov 21, 2021
Shopify Backend Developer Intern Challenge - Summer 2022

Shopify Backend Developer Intern The task is build an inventory tracking web application for a logistics company. The detailed task details can be fou

Meet Gandhi 11 Oct 08, 2022
A simple single-color identicon generator

Identicons What are identicons? Setup: git clone https://github.com/vjdad4m/identicons.git cd identicons pip3 install -r requirements.txt chmod +x

Adam Vajda 1 Oct 31, 2021
πŸ€–πŸ€– Jarvis is an virtual assistant which can some tasks easy for you like surfing on web opening an app and much more... πŸ€–πŸ€–

Jarvis πŸ€– πŸ€– Jarvis is an virtual assistant which can some tasks easy for you like surfing on web opening an app and much more... πŸ€– πŸ€– Developer : su

1 Nov 08, 2021
This project is about for notifying moderators about uploaded photos on server.

This project is about for notifying moderators (people who moderate data from photos) about uploaded photos on server.

1 Nov 24, 2021
Model synchronization from dbt to Metabase.

dbt-metabase Model synchronization from dbt to Metabase. If dbt is your source of truth for database schemas and you use Metabase as your analytics to

Mike Gouline 270 Jan 08, 2023
Python data loader for Solar Orbiter's (SolO) Energetic Particle Detector (EPD).

Data loader (and downloader) for Solar Orbiter/EPD energetic charged particle sensors EPT, HET, and STEP. Supports level 2 and low latency data provided by ESA's Solar Orbiter Archive.

Jan Gieseler 9 Dec 16, 2022