GWAS summary statistics files QC tool

Overview

SSrehab

dependencies:

  • python 3.8+
  • a GNU/Linux with bash v4 or 5.
  • python packages in requirements.txt
  • bcftools (only for prepare_dbSNPs)
  • gz-sort (only for prepare_dbSNPs)

Installation and basics

  1. clone this repo
git clone https://github.com/Kukuster/SSrehab.git
  1. install requirements
pip install -r requirements.txt
  1. run the eponymous script in the cloned directory using the following syntax:
python3 SSrehab.py <command> [keys]

Use diagnose to check the validity of entries in the GWAS SS file.

Use fix to restore missing/invalid data in the GWAS SS file.

Use prepare_dbSNPs to preprocess a given dbSNP dataset into 2 datasets, which are used in the fix command.

Use sort to format the input GWAS SS file and sort either by Chr and BP or by rsID.

To use the fix command to its fullest, a user needs:

  • SNPs datasets in the target build, preprocessed with the prepare_dbSNPs command.
  • chain file, if the GWAS SS file is provided in build different from the target build

Tutorial

1. Download dbSNP dataset

Download dbSNP datasets from NCBI, in the target build, in vcf, vcf.gz, bcf, or bcf.gz format. The latest versions are recommended. dbSNP datasets are used to restore the following data: Chr, BP, rsID, OA, EA, EAF. Although only builds 37 and 38 are explicitly supported, build 36 may work as well.

For example, curently latest datasets for build 38 and build 37 can be downloaded here:

https://ftp.ncbi.nih.gov/snp/latest_release/VCF/

2. Download the chain file

A chain file is necessary to perform liftover. If a GWAS SS file is provided in the target build, then a chain file is not used.

3. Preprocess dbSNPs datasets

3.1 Download and install bcftools and gz-sort

see instructions on their websites and/or githubs

recommended bcftools version: 1.11

NOTE: after preprocessing of the necessary dbSNPs is finished, these tools are no longer needed

3.2 Run preprocessing

Run prepare_dbSNPs using the following syntax:

python3 SSrehab.py prepare_dbSNPs --dbsnp DBSNP --OUTPUT OUTPUT --gz-sort GZ_SORT --bcftools BCFTOOLS
                                  [--buffer BUFFER]

where:

  • DBSNP is the dbSNP dataset in vcf, vcf.gz, bcf, or bcf.gz format referencing build 38 or 37
  • OUTPUT is the base name for the two output dbSNPs datasets
  • GZ_SORT is a path to the gz-sort executable
  • BCFTOOLS is a path to the bcftools executable
  • BUFFER is buffer size for sorting (size of presort), supports k/M/G suffix. Defaults to 1G. Recommended: at least 200M, ideally: 4G or more

Depending on the size of the dataset, specified buffer size, and specs of the machine, preprocessing may take somewhere from 30 minutes to 6 hours.

After preprocessing, steps 4 and 5 may be repeated ad-lib.

4. Create a config file for your GWAS SS file

Config file is used as meta data for GWAS SS file, and contains:

  1. columns' indices (indices start from 0)
  2. input build slug (such as "GRCh38", "GRCh37", "hg18", "hg19")

This config file has to have the same file name as the GWAS SS file but with an additional .json extension.

For example, if your GWAS SS file is named WojcikG_PMID_htn.gz, and the first 5 lines in the unpacked file are:

Chr     Position_hg19   SNP     Other-allele    Effect-allele   Effect-allele-frequency Sample-size     Effect-allele-frequency-cases   Sample-size-cases       Beta    SE      P-val    INFO-score      rsid
1       10539   1:10539:C:A     C       A       0.004378065     49141   0.003603676     27123   -0.1041663      0.1686092       0.5367087       0.46    rs537182016
1       10616   rs376342519:10616:CCGCCGTTGCAAAGGCGCGCCG:C      CCGCCGTTGCAAAGGCGCGCCG  C       0.9916342       49141   0.9901789       27123   -0.1738814      0.109543        0.1124369        0.604   rs376342519
1       10642   1:10642:G:A     G       A       0.006042409     49141   0.007277901     27123   0.1794246       0.1482529       0.226179        0.441   rs558604819
1       11008   1:11008:C:G     C       G       0.1054568       49141   0.1042446       27123   -0.007140072    0.03613677      0.84337 0.5     rs575272151

your config file should have the name WojcikG_PMID_htn.gz.json and the following contents:

{
    "Chr": 0,
    "BP": 1,
    "rsID": 13,
    "OA": 3,
    "EA": 4,
    "EAF": 5,
    "beta": 9,
    "SE": 10,
    "pval": 11,
    "INFO": 12,

    "build": "grch37"
}

Notes:

  • SSrehab will only consider data from the columns which indices are specified in the config file. If one of the above columns is present in the SS file but wasn't specified in the config file, then SSrehab treats the column as missing.
  • In this example, all the 10 columns from the list of supported columns are present. But none of the columns above are mandatory. If certain columns are missing, the fix command will attempt to restore them if possible.

5. Run the fix command

When the config file is created, and dbSNP datasets are preprocessed, the chain file is downloaded if necessary, then the fix command can use all its features.

Although it is normally a part of the execution of the fix command, a user may choose to manually run diagnose beforehand.

If diagnose is ran without additional arguments, it is "read-only", i.e. doesn't write into the file system.

Run diagnose as follows:

python3 SSrehab.py diagnose --INPUT INPUT_GWAS_FILE

where INPUT_GWAS_FILE is the path to the GWAS SS file with the corresponding config file at *.json

as a result, it will generate the main plot: stacked histogram plot, and an additional bar chart plot for each of the bins in the stacked histogram plot.

These plots will pop up in a new matplotlib window.

The stacked histogram maps the number of invalid SNPs against p-value, allowing assessment of the distribution of invalid SNPs by significance. On the histogram, valid SNPs are shown as blue, and SNPs that have issues are shown as red. The height of the red plot over each bin with the red caption represents the proportion of invalid SNPs in the corresponding bin.

WojcikG_PMID_htn gz

A bar chart is generated for each bin of the stacked histogram plot and reports the number of issues that invalidate the SNP entries in a particular bin.

bin_3__1e-5—1e-3

If a Linux system runs without GUI, the report should be saved on the file system. For this, run the command as follows:

python3 SSrehab.py diagnose --INPUT INPUT_GWAS_FILE --REPORT-DIR REPORT_DIR

where REPORT_DIR is an existing or not existing directory under which the generated report will be contained. When saved onto a disk, the report also includes a small table with exact numbers of invalid fields and other issues in the GWAS SS file.

Finally, a user may want to decide to run the fix command.

A user should run the fix command as follows:

python3 SSrehab.py fix --INPUT INPUT_GWAS_FILE --OUTPUT OUTPUT_FILE
                       [--dbsnp-1 DBSNP1_FILE] [--dbsnp-2 DBSNP2_FILE]
                       [--chain-file CHAIN_FILE]
                       [--freq-db FREQ_DATABASE_SLUG]

where:

  • INPUT_GWAS_FILE is the input GWAS SS file with the corresponding .json config file create at step 4
  • OUTPUT_FILE is the base name for the fixed file(s)
  • DBSNP1_FILE is a path to the preprocessed dbSNP #1
  • DBSNP2_FILE is a path to the preprocessed dbSNP #2
  • CHAIN_FILE is a path to the chain file
  • FREQ_DATABASE_SLUG is a population slug from a frequency database in dbSNP

example:

python3 SSrehab.py fix --INPUT "29559693.tsv" --OUTPUT "SSrehab_fixed/29559693" --dbsnp-1 "dbSNP_155_b38.1.tsv.gz" --dbsnp-2 "dbSNP_155_b38.2.tsv.gz" --chain-file "hg19_to_hg38.chain" --freq-db TOPMED

As the normal process of fix, a report will be generated for the input file, as well as for the file after each step of processing. Depending on the availability of invalid/missing data in the GWAS SS file and the input arguments, a different number of steps may be required for a complete run of the fix command, with 1 or 2 loops performed on the GWAS SS file. All steps are performed automatically without prompt. The process of fixing is represented in logging to the standard output and may take anywhere from 5 minutes to 1.5 hours, depending on the size of the file and the number of steps.

As a result, if 1 loop was required to fix the file, then the resulting file will be available with the suffix .SSrehabed.tsv. If 2 loops were required, then the resulting file is available with the suffix .SSrehabed-twice.tsv.

The report made with a diagnose command will be available in a separate directory for:

  • the input file
  • for the file after 1 loop of fixing
  • for the file after 2 loops of fixing (applicable only if 2 loops were required)

Manual

Please refer to the instructions by running

python3 SSrehab.py -h

or

python3 SSrehab.py <command> -h

NOTES

"standard" format

  • file is in the tsv format, i.e. tabular tab-separated format (bare, zipped, or gzipped)
  • there's a one-line header in the file on the first line. All other lines are the data entries
  • the file has precisely columns defined as STANDARD_COLUMN_ORDER in lib/standard_column_order.py.
    • file has exactly these columns, exactly this number of columns, and no other columns
    • columns are in this exact order
    • if the original file was missing a column, an empty column should be taking its place (entries are the empty string)

BACKLOG

  • upon execution of the fix command, a config file has to be generated with all the names of the intermediary files. This will improve refactoring into the actual pipeline.
  • (maybe) improve restoring alleles by adding checks for an exact match of flipped alleles if other checks didn't help. This requires having all SNPs for a particular ChrBP in the memory and is relevant only for restoring alleles by looping through the file sorted by Chr and BP.
  • add the ability to specify additional columns from the GWAS SS file that the user wants to include in the end file. This would be an array of integers in the json config file for the input GWAS SS file.
  • improve code in the main file: SSrehab.py
  • improve resolver architecture in loop_fix.py: make a separate function loopDB1 and loopDB2 that will loop through enough entries in a DB before every resolver and rewrite a "global" object with properties to be fields from the DB: rsID, Chr, BP, alleles, EAF. So resolvers for rsID and ChrBP will be similar to ones for alleles and EAF. Resolvers for these fields then should operate on fields and that object with fields from a DB. This way a really strong optimization, flexibility, and modularity of resolvers will be achieved. run_all doesn't have to have resolvers and resolvers_args object to be passed, it can just use the global ones.
  • improve the interface for liftover. SSrehab fix should work for all sorts of liftovers between builds 36, 37, and 38, including back liftover. If the user omits the preprocessed dbSNP databases as input but specifies the chain file, it can perform liftover only.
  • add support for OR, and, maybe, restoration of OR from beta or vice versa.
  • add a keyword argument that will cause SSrehab fix to clean up all intermediate files and leave only the last resulting file after the processing.
  • add a keyword argument that specifies a temp directory for intermediate files. GWAS SS files are usually 1-4 Gigs unpacked.
  • set alleles column to uppercase during preparation (in prepare_GWASSS_columns.py script).
  • feature: save a human-readable textual report about the overall results of restoration (e.g. "performed a liftover, n rsIDs restored, n Chrs lost, ...")
  • add a WARNING that beta will be restored with an accurate sign only when the standard error is signed.
  • at the moment of 2021.11.14, the following executables are assumed to be available in PATH: bash, cut, paste, sort, awk, gzip, gunzip, head, tail, rm, wc. Need to test SSrehab with a different versions of bash, awk (including gawk, nawk, mawk. E.g. even though gawk is default for GNU/Linux, Ubuntu has mawk by default).
  • make SSrehab installable via pip
Zeus is an open source flight intellingence tool which supports more than 13,000+ airlines and 250+ countries.

Zeus Zeus is an open source flight intellingence tool which supports more than 13,000+ airlines and 250+ countries. Any flight worldwide, at your fing

DeVickey 1 Oct 22, 2021
Automatically remove user join messages when the user leaves the server.

CleanLeave Automatically remove user join messages when the user leaves the server. Installation You will need to install poetry to run this bot local

11 Sep 19, 2022
Back-end API for the reternal framework

RE:TERNAL RE:TERNAL is a centralised purple team simulation platform. Reternal uses agents installed on a simulation network to execute various known

Joey Dreijer 7 Apr 15, 2022
A simple assembly- and brainfuck-inspired stack-based language

asm-stackfuck A simple assembly- and brainfuck-inspired stack-based language. The language has a few goals: Be stack-based Look like assembly Have a s

Nils Trinity 1 Feb 06, 2022
Object-oriented programming exercise session held in Petnica.

OOP vežba ⚠️ The code in this repo is used for a OOP practice session held in Petnica. All instructions in the README file are written in Serbian. Ops

Pavle Ćirić 1 Jan 30, 2022
Ultimate Microsoft Edge Uninstaller!

Ultimate Microsoft Edge Uninstaller

1 Feb 08, 2022
pydock - Docker-based environment manager for Python

pydock - Docker-based environment manager for Python ⚠️ pydock is still in beta mode, and very unstable. It is not recommended for anything serious. p

Alejandro Piad 16 Sep 18, 2021
AIST++ API This repo contains starter code for using the AIST++ dataset.

Explainability for Vision Transformers (in PyTorch) This repository implements methods for explainability in Vision Transformers

Google 260 Dec 30, 2022
A minimalist personal blogging system that natively supports Markdown, LaTeX, and code highlighting.

December Welcome to the December blogging system's code repository! Introduction December is a minimalist personal blogging system that natively suppo

TriNitroTofu 10 Dec 05, 2022
Este software fornece interface gráfica para o escputil e tem por finalidade testar e fazer limpeza no cabeçote de impressão....

PrinterTools O que é PrinterTools? PrinterTools é uma ferramenta gráfica que usa o escputil para testar e fazer limpeza de cabeçote de impressão em si

Elizeu Barbosa Abreu 1 Dec 21, 2021
Gives criticality score for an open source project

Open Source Project Criticality Score (Beta) This project is maintained by members of the Securing Critical Projects WG. Goals Generate a criticality

Open Source Security Foundation (OpenSSF) 1.1k Dec 23, 2022
A simple app that helps to train quick calculations.

qtcounter A simple app that helps to train quick calculations. Usage Manual Clone the repo in a folder using git clone https://github.com/Froloket64/q

0 Nov 27, 2021
Test for using pyIIIFpres for rara magnetica project

raramagnetica_pyIIIFpres Test for using pyIIIFpres for rara magnetica project. This test show how to use pyIIIFpres for creating mannifest compliant t

Giacomo Marchioro 1 Dec 03, 2021
Simple calculator with random number button and dark gray theme created with PyQt6

Calculator Application Simple calculator with random number button and dark gray theme created with : PyQt6 Python 3.9.7 you can download the dark gra

Flamingo 2 Mar 07, 2022
A wrapper around the python Tkinter library for customizable and modern ui-elements in Tkinter

CustomTkinter With CustomTkinter you can create modern looking user interfaces in python with tkinter. CustomTkinter is a tkinter extension which prov

4.9k Jan 02, 2023
Repository for 2021 Computer Vision Class @ Chulalongkorn University

2110443 - Computer Vision (2021/2) Computer Vision @ Chulalongkorn University Anaconda Download Link https://www.anaconda.com/download/ Miniconda and

Chula PIC Lab 5 Jul 19, 2022
Python Projects is an Open Source to enhance your python skills

Welcome! 👋🏽 Python Project is Open Source to enhance your python skills. You're free to contribute. 🤓 You just need to give us your scripts written

Tristán 6 Nov 28, 2022
Final project in KAIST AI class

mmodal_mixer MLP-Mixer based Multi-modal image-text retrieval Image: Original image is cropped with 16 x 16 patch size without overlap. Then, it is re

SuperSuperMoon 5 May 30, 2022
The Open edX platform, the software that powers edX!

This is the core repository of the Open edX software. It includes the LMS (student-facing, delivering courseware), and Studio (course authoring) compo

edX 6.2k Jan 01, 2023
The purpose of this tool is to check RDP capabilities of a user on specific targets.

RDPChecker The purpose of this tool is to check RDP capabilities of a user on specific targets. Programming concept was taken from RDPassSpray and thu

Hypnoze57 57 Aug 04, 2022