Search with BERT vectors in Solr and Elasticsearch

Overview

BERT models with Solr and Elasticsearch

streamlit-search_demo_solr-2021-05-13-10-05-91.mp4
streamlit-search_demo_elasticsearch-2021-05-14-22-05-55.mp4

This code is described in the following Medium stories, taking one step at a time:

Neural Search with BERT and Solr (August 18,2020)

Fun with Apache Lucene and BERT Embeddings (November 15, 2020)

Speeding up BERT Search in Elasticsearch (March 15, 2021)

Ask Me Anything about Vector Search (June 20, 2021) This blog post gives the answers to the 3 most interesting questions asked during the AMA session at Berlin Buzzwords 2021. The video recording is available here: https://www.youtube.com/watch?v=blFe2yOD1WA

Bert in Solr hat Bert with_es burger


Tech stack:

  • bert-as-service
  • Hugging Face
  • solr / elasticsearch
  • streamlit
  • Python 3.7

Code for dealing with Solr has been copied from the great (and highly recommended) https://github.com/o19s/hello-ltr project.

Install tensorflow

pip install tensorflow==1.15.3

If you try to install tensorflow 2.3, bert service will fail to start, there is an existing issue about it.

If you encounter issues with the above installation, consider installing full list of packages:

pip install -r requirements_freeze.txt

Let's install bert-as-service components

pip install bert-serving-server

pip install bert-serving-client

Download a pre-trained BERT model

into the bert-model/ directory in this project. I have chosen uncased_L-12_H-768_A-12.zip for this experiment. Unzip it.

Now let's start the BERT service

bash start_bert_server.sh

Run a sample bert client

python src/bert_client.py

to compute vectors for 3 sample sentences:

    Bert vectors for sentences ['First do it', 'then do it right', 'then do it better'] : [[ 0.13186474  0.32404128 -0.82704437 ... -0.3711958  -0.39250174
      -0.31721866]
     [ 0.24873531 -0.12334424 -0.38933852 ... -0.44756213 -0.5591355
      -0.11345179]
     [ 0.28627345 -0.18580122 -0.30906814 ... -0.2959366  -0.39310536
       0.07640187]]

This sets up the stage for our further experiment with Solr.

Dataset

This is by far the key ingredient of every experiment. You want to find an interesting collection of texts, that are suitable for semantic level search. Well, maybe all texts are. I have chosen a collection of abstracts from DBPedia, that I downloaded from here: https://wiki.dbpedia.org/dbpedia-version-2016-04 and placed into data/dbpedia directory in bz2 format. You don't need to extract this file onto disk: the provided code will read directly from the compressed file.

Preprocessing and Indexing: Solr

Before running preprocessing / indexing, you need to configure the vector plugin, which allows to index and query the vector data. You can find the plugin for Solr 8.x here: https://github.com/DmitryKey/solr-vector-scoring

After the plugin's jar has been added, configure it in the solrconfig.xml like so:

">

  

Schema also requires an addition: field of type VectorField is required in order to index vector data:

">

  

Find ready-made schema and solrconfig here: https://github.com/DmitryKey/bert-solr-search/tree/master/solr_conf

Let's preprocess the downloaded abstracts, and index them in Solr. First, execute the following command to start Solr:

bin/solr start -m 2g

If during processing you will notice:

<...>/bert-solr-search/venv/lib/python3.7/site-packages/bert_serving/client/__init__.py:299: UserWarning: some of your sentences have more tokens than "max_seq_len=500" set on the server, as consequence you may get less-accurate or truncated embeddings.
here is what you can do:
- disable the length-check by create a new "BertClient(check_length=False)" when you do not want to display this warning
- or, start a new server with a larger "max_seq_len"
  '- or, start a new server with a larger "max_seq_len"' % self.length_limit)

The index_dbpedia_abstracts_solr.py script will output statistics:

Maximum tokens observed per abstract: 697
Flushing 100 docs
Committing changes
All done. Took: 82.46466588973999 seconds

We know how many abstracts there are:

bzcat data/dbpedia/long_abstracts_en.ttl.bz2 | wc -l
5045733

Preprocessing and Indexing: Elasticsearch

This project implements several ways to index vector data:

  • src/index_dbpedia_abstracts_elastic.py vanilla Elasticsearch: using dense_vector data type
  • src/index_dbpedia_abstracts_elastiknn.py Elastiknn plugin: implements own data type. I used elastiknn_dense_float_vector
  • src/index_dbpedia_abstracts_opendistro.py OpenDistro for Elasticsearch: uses nmslib to build Hierarchical Navigable Small World (HNSW) graphs during indexing

Each indexer relies on ready-made Elasticsearch mapping file, that can be found in es_conf/ directory.

Preprocessing and Indexing: GSI APU

In order to use GSI APU solution, a user needs to produce two files: numpy 2D array with vectors of desired dimension (768 in my case) a pickle file with document ids matching the document ids of the said vectors in Elasticsearch.

After these data files get uploaded to the GSI server, the same data gets indexed in Elasticsearch. The APU powered search is performed on up to 3 Leda-G PCIe APU boards. Since I’ve run into indexing performance with bert-as-service solution, I decided to take SBERT approach from Hugging Face to prepare the numpy and pickle array files. This allowed me to index into Elasticsearch freely at any time, without waiting for days. You can use this script to do this on DBPedia data, which allows choosing between:

EmbeddingModel.HUGGING_FACE_SENTENCE (SBERT)
EmbeddingModel.BERT_UNCASED_768 (bert-as-service)

To generate the numpy and pickle files, use the following script: scr/create_gsi_files.py. This script produces two files:

data/1000000_EmbeddingModel.HUGGING_FACE_SENTENCE_vectors.npy
data/1000000_EmbeddingModel.HUGGING_FACE_SENTENCE_vectors_docids.pkl

Both files are perfectly suitable for indexing with Solr and Elasticsearch.

To test the GSI plugin, you will need to upload these files to GSI server for loading them both to Elasticsearch and APU.

Running the BERT search demo

There are two streamlit demos for running BERT search for Solr and Elasticsearch. Each demo compares to BM25 based search. The following assumes that you have bert-as-service up and running (if not, laucnh it with bash start_bert_server.sh) and either Elasticsearch or Solr running with the index containing field with embeddings.

To run a demo, execute the following on the command line from the project root:

# for experiments with Elasticsearch
streamlit run src/search_demo_elasticsearch.py

# for experiments with Solr
streamlit run src/search_demo_solr.py
Owner
Dmitry Kan
I build search engines. Host of the Vector Podcast: https://www.youtube.com/channel/UCCIMPfR7TXyDvlDRXjVhP1g
Dmitry Kan
A very simple framework for state-of-the-art Natural Language Processing (NLP)

A very simple framework for state-of-the-art NLP. Developed by Humboldt University of Berlin and friends. IMPORTANT: (30.08.2020) We moved our models

flair 12.3k Dec 31, 2022
Using BERT-based models for toxic span detection

SemEval 2021 Task 5: Toxic Spans Detection: Task: Link to SemEval-2021: Task 5 Toxic Span Detection is https://competitions.codalab.org/competitions/2

Ravika Nagpal 1 Jan 04, 2022
🐍 A hyper-fast Python module for reading/writing JSON data using Rust's serde-json.

A hyper-fast, safe Python module to read and write JSON data. Works as a drop-in replacement for Python's built-in json module. This is alpha software

Matthias 479 Jan 01, 2023
Text classification on IMDB dataset using Keras and Bi-LSTM network

Text classification on IMDB dataset using Keras and Bi-LSTM Text classification on IMDB dataset using Keras and Bi-LSTM network. Usage python3 main.py

Hamza Rashid 2 Sep 27, 2022
Disfl-QA: A Benchmark Dataset for Understanding Disfluencies in Question Answering

Disfl-QA is a targeted dataset for contextual disfluencies in an information seeking setting, namely question answering over Wikipedia passages. Disfl-QA builds upon the SQuAD-v2 (Rajpurkar et al., 2

Google Research Datasets 52 Jun 21, 2022
PyABSA - Open & Efficient for Framework for Aspect-based Sentiment Analysis

PyABSA - Open & Efficient for Framework for Aspect-based Sentiment Analysis

YangHeng 567 Jan 07, 2023
This repository contains the code for running the character-level Sandwich Transformers from our ACL 2020 paper on Improving Transformer Models by Reordering their Sublayers.

Improving Transformer Models by Reordering their Sublayers This repository contains the code for running the character-level Sandwich Transformers fro

Ofir Press 53 Sep 26, 2022
Transformation spoken text to written text

Transformation spoken text to written text This model is used for formatting raw asr text output from spoken text to written text (Eg. date, number, i

Nguyen Binh 16 Dec 28, 2022
State of the Art Natural Language Processing

Spark NLP: State of the Art Natural Language Processing Spark NLP is a Natural Language Processing library built on top of Apache Spark ML. It provide

John Snow Labs 3k Jan 05, 2023
Open-World Entity Segmentation

Open-World Entity Segmentation Project Website Lu Qi*, Jason Kuen*, Yi Wang, Jiuxiang Gu, Hengshuang Zhao, Zhe Lin, Philip Torr, Jiaya Jia This projec

DV Lab 408 Dec 29, 2022
Code voor mijn Master project omtrent VideoBERT

Code voor masterproef Deze repository bevat de code voor het project van mijn masterproef omtrent VideoBERT. De code in deze repository is gebaseerd o

35 Oct 18, 2021
Beyond Accuracy: Behavioral Testing of NLP models with CheckList

CheckList This repository contains code for testing NLP Models as described in the following paper: Beyond Accuracy: Behavioral Testing of NLP models

Marco Tulio Correia Ribeiro 1.8k Dec 28, 2022
Python package for performing Entity and Text Matching using Deep Learning.

DeepMatcher DeepMatcher is a Python package for performing entity and text matching using deep learning. It provides built-in neural networks and util

461 Dec 28, 2022
Neural-Machine-Translation - Implementation of revolutionary machine translation models

Neural Machine Translation Framework: PyTorch Repository contaning my implementa

Utkarsh Jain 1 Feb 17, 2022
Natural Language Processing for Adverse Drug Reaction (ADR) Detection

Natural Language Processing for Adverse Drug Reaction (ADR) Detection This repo contains code from a project to identify ADRs in discharge summaries a

Medicines Optimisation Service - Austin Health 21 Aug 05, 2022
Generate custom detailed survey paper with topic clustered sections and proper citations, from just a single query in just under 30 mins !!

Auto-Research A no-code utility to generate a detailed well-cited survey with topic clustered sections (draft paper format) and other interesting arti

Sidharth Pal 20 Dec 14, 2022
🤕 spelling exceptions builder for lazy people

🤕 spelling exceptions builder for lazy people

Vlad Bokov 3 May 12, 2022
CYGNUS, the Cynical AI, combines snarky responses with uncanny aggression.

New & (hopefully) Improved CYGNUS with several API updates, user updates, and online/offline operations added!!!

Simran Farrukh 0 Mar 28, 2022
Write Python in Urdu - اردو میں کوڈ لکھیں

UrduPython Write simple Python in Urdu. How to Use Write Urdu code in سامپل۔پے The mappings are as following: "۔": ".", "،":

Saad A. Bazaz 26 Nov 27, 2022
COVID-19 Chatbot with Rasa 2.0: open source conversational AI

COVID-19 chatbot implementation with Rasa open source 2.0, conversational AI framework.

Aazim Parwaz 1 Dec 23, 2022