Search with BERT vectors in Solr and Elasticsearch

Overview

BERT models with Solr and Elasticsearch

streamlit-search_demo_solr-2021-05-13-10-05-91.mp4
streamlit-search_demo_elasticsearch-2021-05-14-22-05-55.mp4

This code is described in the following Medium stories, taking one step at a time:

Neural Search with BERT and Solr (August 18,2020)

Fun with Apache Lucene and BERT Embeddings (November 15, 2020)

Speeding up BERT Search in Elasticsearch (March 15, 2021)

Ask Me Anything about Vector Search (June 20, 2021) This blog post gives the answers to the 3 most interesting questions asked during the AMA session at Berlin Buzzwords 2021. The video recording is available here: https://www.youtube.com/watch?v=blFe2yOD1WA

Bert in Solr hat Bert with_es burger


Tech stack:

  • bert-as-service
  • Hugging Face
  • solr / elasticsearch
  • streamlit
  • Python 3.7

Code for dealing with Solr has been copied from the great (and highly recommended) https://github.com/o19s/hello-ltr project.

Install tensorflow

pip install tensorflow==1.15.3

If you try to install tensorflow 2.3, bert service will fail to start, there is an existing issue about it.

If you encounter issues with the above installation, consider installing full list of packages:

pip install -r requirements_freeze.txt

Let's install bert-as-service components

pip install bert-serving-server

pip install bert-serving-client

Download a pre-trained BERT model

into the bert-model/ directory in this project. I have chosen uncased_L-12_H-768_A-12.zip for this experiment. Unzip it.

Now let's start the BERT service

bash start_bert_server.sh

Run a sample bert client

python src/bert_client.py

to compute vectors for 3 sample sentences:

    Bert vectors for sentences ['First do it', 'then do it right', 'then do it better'] : [[ 0.13186474  0.32404128 -0.82704437 ... -0.3711958  -0.39250174
      -0.31721866]
     [ 0.24873531 -0.12334424 -0.38933852 ... -0.44756213 -0.5591355
      -0.11345179]
     [ 0.28627345 -0.18580122 -0.30906814 ... -0.2959366  -0.39310536
       0.07640187]]

This sets up the stage for our further experiment with Solr.

Dataset

This is by far the key ingredient of every experiment. You want to find an interesting collection of texts, that are suitable for semantic level search. Well, maybe all texts are. I have chosen a collection of abstracts from DBPedia, that I downloaded from here: https://wiki.dbpedia.org/dbpedia-version-2016-04 and placed into data/dbpedia directory in bz2 format. You don't need to extract this file onto disk: the provided code will read directly from the compressed file.

Preprocessing and Indexing: Solr

Before running preprocessing / indexing, you need to configure the vector plugin, which allows to index and query the vector data. You can find the plugin for Solr 8.x here: https://github.com/DmitryKey/solr-vector-scoring

After the plugin's jar has been added, configure it in the solrconfig.xml like so:

">

  

Schema also requires an addition: field of type VectorField is required in order to index vector data:

">

  

Find ready-made schema and solrconfig here: https://github.com/DmitryKey/bert-solr-search/tree/master/solr_conf

Let's preprocess the downloaded abstracts, and index them in Solr. First, execute the following command to start Solr:

bin/solr start -m 2g

If during processing you will notice:

<...>/bert-solr-search/venv/lib/python3.7/site-packages/bert_serving/client/__init__.py:299: UserWarning: some of your sentences have more tokens than "max_seq_len=500" set on the server, as consequence you may get less-accurate or truncated embeddings.
here is what you can do:
- disable the length-check by create a new "BertClient(check_length=False)" when you do not want to display this warning
- or, start a new server with a larger "max_seq_len"
  '- or, start a new server with a larger "max_seq_len"' % self.length_limit)

The index_dbpedia_abstracts_solr.py script will output statistics:

Maximum tokens observed per abstract: 697
Flushing 100 docs
Committing changes
All done. Took: 82.46466588973999 seconds

We know how many abstracts there are:

bzcat data/dbpedia/long_abstracts_en.ttl.bz2 | wc -l
5045733

Preprocessing and Indexing: Elasticsearch

This project implements several ways to index vector data:

  • src/index_dbpedia_abstracts_elastic.py vanilla Elasticsearch: using dense_vector data type
  • src/index_dbpedia_abstracts_elastiknn.py Elastiknn plugin: implements own data type. I used elastiknn_dense_float_vector
  • src/index_dbpedia_abstracts_opendistro.py OpenDistro for Elasticsearch: uses nmslib to build Hierarchical Navigable Small World (HNSW) graphs during indexing

Each indexer relies on ready-made Elasticsearch mapping file, that can be found in es_conf/ directory.

Preprocessing and Indexing: GSI APU

In order to use GSI APU solution, a user needs to produce two files: numpy 2D array with vectors of desired dimension (768 in my case) a pickle file with document ids matching the document ids of the said vectors in Elasticsearch.

After these data files get uploaded to the GSI server, the same data gets indexed in Elasticsearch. The APU powered search is performed on up to 3 Leda-G PCIe APU boards. Since I’ve run into indexing performance with bert-as-service solution, I decided to take SBERT approach from Hugging Face to prepare the numpy and pickle array files. This allowed me to index into Elasticsearch freely at any time, without waiting for days. You can use this script to do this on DBPedia data, which allows choosing between:

EmbeddingModel.HUGGING_FACE_SENTENCE (SBERT)
EmbeddingModel.BERT_UNCASED_768 (bert-as-service)

To generate the numpy and pickle files, use the following script: scr/create_gsi_files.py. This script produces two files:

data/1000000_EmbeddingModel.HUGGING_FACE_SENTENCE_vectors.npy
data/1000000_EmbeddingModel.HUGGING_FACE_SENTENCE_vectors_docids.pkl

Both files are perfectly suitable for indexing with Solr and Elasticsearch.

To test the GSI plugin, you will need to upload these files to GSI server for loading them both to Elasticsearch and APU.

Running the BERT search demo

There are two streamlit demos for running BERT search for Solr and Elasticsearch. Each demo compares to BM25 based search. The following assumes that you have bert-as-service up and running (if not, laucnh it with bash start_bert_server.sh) and either Elasticsearch or Solr running with the index containing field with embeddings.

To run a demo, execute the following on the command line from the project root:

# for experiments with Elasticsearch
streamlit run src/search_demo_elasticsearch.py

# for experiments with Solr
streamlit run src/search_demo_solr.py
Owner
Dmitry Kan
I build search engines. Host of the Vector Podcast: https://www.youtube.com/channel/UCCIMPfR7TXyDvlDRXjVhP1g
Dmitry Kan
ACL22 paper: Imputing Out-of-Vocabulary Embeddings with LOVE Makes Language Models Robust with Little Cost

Imputing Out-of-Vocabulary Embeddings with LOVE Makes Language Models Robust with Little Cost LOVE is accpeted by ACL22 main conference as a long pape

Lihu Chen 32 Jan 03, 2023
✨Fast Coreference Resolution in spaCy with Neural Networks

✨ NeuralCoref 4.0: Coreference Resolution in spaCy with Neural Networks. NeuralCoref is a pipeline extension for spaCy 2.1+ which annotates and resolv

Hugging Face 2.6k Jan 04, 2023
PyTorch implementation of Tacotron speech synthesis model.

tacotron_pytorch PyTorch implementation of Tacotron speech synthesis model. Inspired from keithito/tacotron. Currently not as much good speech quality

Ryuichi Yamamoto 279 Dec 09, 2022
Segmenter - Transformer for Semantic Segmentation

Segmenter - Transformer for Semantic Segmentation

592 Dec 27, 2022
Tool to add main subject to items on Wikidata using a WMFs CirrusSearch for named entity recognition or a manually supplied list of QIDs

ItemSubjector Tool made to add main subject statements to items based on the title using a home-brewed CirrusSearch-based Named Entity Recognition alg

Dennis Priskorn 9 Nov 17, 2022
A 30000+ Chinese MRC dataset - Delta Reading Comprehension Dataset

Delta Reading Comprehension Dataset 台達閱讀理解資料集 Delta Reading Comprehension Dataset (DRCD) 屬於通用領域繁體中文機器閱讀理解資料集。 本資料集期望成為適用於遷移學習之標準中文閱讀理解資料集。 本資料集從2,108篇

272 Dec 15, 2022
In this project, we aim to achieve the task of predicting emojis from tweets. We aim to investigate the relationship between words and emojis.

Making Emojis More Predictable by Karan Abrol, Karanjot Singh and Pritish Wadhwa, Natural Language Processing (CSE546) under the guidance of Dr. Shad

Karanjot Singh 2 Jan 17, 2022
Code release for NeX: Real-time View Synthesis with Neural Basis Expansion

NeX: Real-time View Synthesis with Neural Basis Expansion Project Page | Video | Paper | COLAB | Shiny Dataset We present NeX, a new approach to novel

537 Jan 05, 2023
An easy to use Natural Language Processing library and framework for predicting, training, fine-tuning, and serving up state-of-the-art NLP models.

Welcome to AdaptNLP A high level framework and library for running, training, and deploying state-of-the-art Natural Language Processing (NLP) models

Novetta 407 Jan 03, 2023
**NSFW** A chatbot based on GPT2-chitchat

DangBot -- 好怪哦,再来一句 卡群怪话bot,powered by GPT2 for Chinese chitchat Training Example: python train.py --lr 5e-2 --epochs 30 --max_len 300 --batch_size 8

Tommy Yang 11 Jul 21, 2022
A model library for exploring state-of-the-art deep learning topologies and techniques for optimizing Natural Language Processing neural networks

A Deep Learning NLP/NLU library by Intel® AI Lab Overview | Models | Installation | Examples | Documentation | Tutorials | Contributing NLP Architect

Intel Labs 2.9k Jan 02, 2023
Global Rhythm Style Transfer Without Text Transcriptions

Global Prosody Style Transfer Without Text Transcriptions This repository provides a PyTorch implementation of AutoPST, which enables unsupervised glo

Kaizhi Qian 193 Dec 30, 2022
New Modeling The Background CodeBase

Modeling the Background for Incremental Learning in Semantic Segmentation This is the updated official PyTorch implementation of our work: "Modeling t

Fabio Cermelli 9 Dec 28, 2022
문장단위로 분절된 나무위키 데이터셋. Releases에서 다운로드 받거나, tfds-korean을 통해 다운로드 받으세요.

Namuwiki corpus 문장단위로 미리 분절된 나무위키 코퍼스. 목적이 LM등에서 사용하기 위한 데이터셋이라, 링크/이미지/테이블 등등이 잘려있습니다. 문장 단위 분절은 kss를 활용하였습니다. 라이선스는 나무위키에 명시된 바와 같이 CC BY-NC-SA 2.0

Jeong Ukjae 16 Apr 02, 2022
✔👉A Centralized WebApp to Ensure Road Safety by checking on with the activities of the driver and activating label generator using NLP.

AI-For-Road-Safety Challenge hosted by Omdena Hyderabad Chapter Original Repo Link : https://github.com/OmdenaAI/omdena-india-roadsafety Final Present

Prathima Kadari 7 Nov 29, 2022
AI-powered literature discovery and review engine for medical/scientific papers

AI-powered literature discovery and review engine for medical/scientific papers paperai is an AI-powered literature discovery and review engine for me

NeuML 819 Dec 30, 2022
Code for "Parallel Instance Query Network for Named Entity Recognition", accepted at ACL 2022.

README Code for Two-stage Identifier: "Parallel Instance Query Network for Named Entity Recognition", accepted at ACL 2022. For details of the model a

Yongliang Shen 45 Nov 29, 2022
Spert NLP Relation Extraction API deployed with torchserve for inference

URLMask Python program for Linux users to change a URL to ANY domain. A program than can take any url and mask it to any domain name you like. E.g. ne

Zichu Chen 1 Nov 24, 2021
FastFormers - highly efficient transformer models for NLU

FastFormers FastFormers provides a set of recipes and methods to achieve highly efficient inference of Transformer models for Natural Language Underst

Microsoft 678 Jan 05, 2023