A pytest plugin, that enables you to test your code that relies on a running PostgreSQL Database

Overview

https://raw.githubusercontent.com/ClearcodeHQ/pytest-postgresql/master/logo.png

pytest-postgresql

Latest PyPI version Wheel Status Supported Python Versions License

What is this?

This is a pytest plugin, that enables you to test your code that relies on a running PostgreSQL Database. It allows you to specify fixtures for PostgreSQL process and client.

How to use

Warning

Tested on PostgreSQL versions >= 10. See tests for more details.

Install with:

pip install pytest-postgresql

You will also need to install psycopg. See its installation instructions.

Plugin contains three fixtures:

  • postgresql - it's a client fixture that has functional scope. After each test it ends all leftover connections, and drops test database from PostgreSQL ensuring repeatability. This fixture returns already connected psycopg connection.
  • postgresql_proc - session scoped fixture, that starts PostgreSQL instance at it's first use and stops at the end of the tests.
  • postgresql_noproc - a noprocess fixture, that's connecting to already running postgresql instance. For example on dockerized test environments, or CI providing postgresql services

Simply include one of these fixtures into your tests fixture list.

You can also create additional postgresql client and process fixtures if you'd need to:

from pytest_postgresql import factories

postgresql_my_proc = factories.postgresql_proc(
    port=None, unixsocketdir='/var/run')
postgresql_my = factories.postgresql('postgresql_my_proc')

Note

Each PostgreSQL process fixture can be configured in a different way than the others through the fixture factory arguments.

Sample test

def test_example_postgres(postgresql):
    """Check main postgresql fixture."""
    cur = postgresql.cursor()
    cur.execute("CREATE TABLE test (id serial PRIMARY KEY, num integer, data varchar);")
    postgresql.commit()
    cur.close()

If you want the database fixture to be automatically populated with your schema there are two ways:

  1. client fixture specific
  2. process fixture specific

Both are accepting same set of possible loaders:

  • sql file path
  • loading function import path (string)
  • actual loading function

That function will receive host, port, user, dbname and password kwargs and will have to perform connection to the database inside. However, you'll be able to run SQL files or even trigger programmatically database migrations you have.

Client specific loads the database each test

postgresql_my_with_schema = factories.postgresql(
    'postgresql_my_proc',
    load=["schemafile.sql", "otherschema.sql", "import.path.to.function", "import.path.to:otherfunction", load_this]
)

Warning

This way, the database will still be dropped each time.

The process fixture performs the load once per test session, and loads the data into the template database. Client fixture then creates test database out of the template database each test, which significantly speeds up the tests.

postgresql_my_proc = factories.postgresql_proc(
    load=["schemafile.sql", "otherschema.sql", "import.path.to.function", "import.path.to:otherfunction", load_this]
)
pytest --postgresql-populate-template=path.to.loading_function --postgresql-populate-template=path.to.other:loading_function --postgresql-populate-template=path/to/file.sql

The loading_function from example will receive , and have to commit that. Connecting to already existing postgresql database --------------------------------------------------

Some projects are using already running postgresql servers (ie on docker instances). In order to connect to them, one would be using the postgresql_noproc fixture.

postgresql_external = factories.postgresql('postgresql_noproc')

By default the postgresql_noproc fixture would connect to postgresql instance using 5432 port. Standard configuration options apply to it.

These are the configuration options that are working on all levels with the postgresql_noproc fixture:

Configuration

You can define your settings in three ways, it's fixture factory argument, command line option and pytest.ini configuration option. You can pick which you prefer, but remember that these settings are handled in the following order:

  • Fixture factory argument
  • Command line option
  • Configuration option in your pytest.ini file
Configuration options
PostgreSQL option Fixture factory argument Command line option pytest.ini option Noop process fixture Default
Path to executable executable --postgresql-exec postgresql_exec
/usr/lib/postgresql/13/bin/pg_ctl
host host --postgresql-host postgresql_host yes 127.0.0.1
port port --postgresql-port postgresql_port yes (5432) random
postgresql user user --postgresql-user postgresql_user yes postgres
password password --postgresql-password postgresql_password yes  
Starting parameters (extra pg_ctl arguments) startparams --postgresql-startparams postgresql_startparams
-w
Postgres exe extra arguments (passed via pg_ctl's -o argument) postgres_options --postgresql-postgres-options postgresql_postgres_options
 
Log filename's prefix logsprefix --postgresql-logsprefix postgresql_logsprefix
 
Location for unixsockets unixsocket --postgresql-unixsocketdir postgresql_unixsocketdir
$TMPDIR
Database name dbname --postgresql-dbname postgresql_dbname yes, however with xdist an index is being added to name, resulting in test0, test1 for each worker. test
Default Schema either in sql files or import path to function that will load it (list of values for each) load --postgresql-load postgresql_load yes  
PostgreSQL connection options options --postgresql-options postgresql_options yes  

Example usage:

  • pass it as an argument in your own fixture

    postgresql_proc = factories.postgresql_proc(
        port=8888)
  • use --postgresql-port command line option when you run your tests

    py.test tests --postgresql-port=8888
    
  • specify your port as postgresql_port in your pytest.ini file.

    To do so, put a line like the following under the [pytest] section of your pytest.ini:

    [pytest]
    postgresql_port = 8888

Examples

Populating database for tests

With SQLAlchemy

This example shows how to populate database and create an SQLAlchemy's ORM connection:

Sample below is simplified session fixture from pyramid_fullauth tests:

from sqlalchemy import create_engine
from sqlalchemy.orm import scoped_session, sessionmaker
from sqlalchemy.pool import NullPool
from zope.sqlalchemy import register


@pytest.fixture
def db_session(postgresql):
    """Session for SQLAlchemy."""
    from pyramid_fullauth.models import Base

    connection = f'postgresql+psycopg2://{postgresql.info.user}:@{postgresql.info.host}:{postgresql.info.port}/{postgresql.info.dbname}'

    engine = create_engine(connection, echo=False, poolclass=NullPool)
    pyramid_basemodel.Session = scoped_session(sessionmaker(extension=ZopeTransactionExtension()))
    pyramid_basemodel.bind_engine(
        engine, pyramid_basemodel.Session, should_create=True, should_drop=True)

    yield pyramid_basemodel.Session

    transaction.commit()
    Base.metadata.drop_all(engine)


@pytest.fixture
def user(db_session):
    """Test user fixture."""
    from pyramid_fullauth.models import User
    from tests.tools import DEFAULT_USER

    new_user = User(**DEFAULT_USER)
    db_session.add(new_user)
    transaction.commit()
    return new_user


def test_remove_last_admin(db_session, user):
    """
    Sample test checks internal login, but shows usage in tests with SQLAlchemy
    """
    user = db_session.merge(user)
    user.is_admin = True
    transaction.commit()
    user = db_session.merge(user)

    with pytest.raises(AttributeError):
        user.is_admin = False

Note

See the original code at pyramid_fullauth's conftest file. Depending on your needs, that in between code can fire alembic migrations in case of sqlalchemy stack or any other code

Maintaining database state outside of the fixtures

It is possible and appears it's used in other libraries for tests, to maintain database state with the use of the pytest-postgresql database managing functionality:

For this import DatabaseJanitor and use its init and drop methods:

import pytest
from pytest_postgresql.janitor import DatabaseJanitor

@pytest.fixture
def database(postgresql_proc):
    # variable definition

    janitor = DatabaseJanitor(
        postgresql_proc.user,
        postgresql_proc.host,
        postgresql_proc.port,
        "my_test_database",
        postgresql_proc.version,
        password="secret_password,
    ):
    janitor.init()
    yield psycopg2.connect(
        dbname="my_test_database",
        user=postgresql_proc.user,
        password="secret_password",
        host=postgresql_proc.host,
        port=postgresql_proc.port,
    )
    janitor.drop()

or use it as a context manager:

import pytest
from pytest_postgresql.janitor import DatabaseJanitor

@pytest.fixture
def database(postgresql_proc):
    # variable definition

    with DatabaseJanitor(
        postgresql_proc.user,
        postgresql_proc.host,
        postgresql_proc.port,
        "my_test_database",
        postgresql_proc.version,
        password="secret_password,
    ):
        yield psycopg2.connect(
            dbname="my_test_database",
            user=postgresql_proc.user,
            password="secret_password",
            host=postgresql_proc.host,
            port=postgresql_proc.port,
        )

Note

DatabaseJanitor manages the state of the database, but you'll have to create connection to use in test code yourself.

You can optionally pass in a recognized postgresql ISOLATION_LEVEL for additional control.

Note

See DatabaseJanitor usage in python's warehouse test code https://github.com/pypa/warehouse/blob/5d15bfe/tests/conftest.py#L127

Connecting to Postgresql (in a docker)

To connect to a docker run postgresql and run test on it, use noproc fixtures.

docker run --name some-postgres -e POSTGRES_PASSWORD=mysecretpassword -d postgres

This will start postgresql in a docker container, however using a postgresql installed locally is not much different.

In tests, make sure that all your tests are using postgresql_noproc fixture like that:

postgresql_in_docker = factories.postgresql_noproc()
postresql = factories.postgresql("postgresql_in_docker", db_name="test")


def test_postgres_docker(postresql):
    """Run test."""
    cur = postgresql.cursor()
    cur.execute("CREATE TABLE test (id serial PRIMARY KEY, num integer, data varchar);")
    postgresql.commit()
    cur.close()

And run tests:

pytest --postgresql-host=172.17.0.2 --postgresql-password=mysecretpassword

Using a common database initialisation between tests

If you've got several tests that require common initialisation, you need to define a load and pass it to your custom postgresql process fixture:

import pytest_postgresql.factories
def load_database(**kwargs):
    db_connection: connection = psycopg2.connect(**kwargs)
    with db_connection.cursor() as cur:
        cur.execute("CREATE TABLE stories (id serial PRIMARY KEY, name varchar);")
        cur.execute(
            "INSERT INTO stories (name) VALUES"
            "('Silmarillion'), ('Star Wars'), ('The Expanse'), ('Battlestar Galactica')"
        )
        db_connection.commit()

postgresql_proc = factories.postgresql_proc(
    load=[load_database],
)

postgresql = factories.postgresql(
    "postgresql_proc",
)

You can also define your own database name by passing same dbname value to both factories.

The way this will work is that the process fixture will populate template database, which in turn will be used automatically by client fixture to create a test database from scratch. Fast, clean and no dangling transactions, that could be accidentally rolled back.

Same approach will work with noproces fixture, while connecting to already running postgresql instance whether it'll be on a docker machine or running remotely or locally.

Owner
Clearcode
Software house with a passion for technology. We specialize in building enterprise-grade adtech, martech and analytics platforms.
Clearcode
Faker is a Python package that generates fake data for you.

Faker is a Python package that generates fake data for you. Whether you need to bootstrap your database, create good-looking XML documents, fill-in yo

Daniele Faraglia 15.2k Jan 01, 2023
Data App Performance Tests

Data App Performance Tests My hypothesis is that The different architectures of

Marc Skov Madsen 6 Dec 14, 2022
Python version of the Playwright testing and automation library.

🎭 Playwright for Python Docs | API Playwright is a Python library to automate Chromium, Firefox and WebKit browsers with a single API. Playwright del

Microsoft 7.8k Jan 02, 2023
A modern API testing tool for web applications built with Open API and GraphQL specifications.

Schemathesis Schemathesis is a modern API testing tool for web applications built with Open API and GraphQL specifications. It reads the application s

Schemathesis.io 1.6k Dec 30, 2022
WrightEagle AutoTest (Has been updated by Cyrus team members)

Autotest2d WrightEagle AutoTest (Has been updated by Cyrus team members) Thanks go to WrightEagle Members. Steps 1- prepare start_team file. In this s

Cyrus Soccer Simulation 2D Team 3 Sep 01, 2022
d4rk Ghost is all in one hacking framework For red team Pentesting

d4rk ghost is all in one Hacking framework For red team Pentesting it contains all modules , information_gathering exploitation + vulnerability scanning + ddos attacks with 12 methods + proxy scraper

d4rk sh4d0w 15 Dec 15, 2022
This repository contains a testing script for nmigen-boards that tries to build blinky for all the platforms provided by nmigen-boards.

Introduction This repository contains a testing script for nmigen-boards that tries to build blinky for all the platforms provided by nmigen-boards.

S.J.R. van Schaik 4 Jul 23, 2022
This is a web test framework based on python+selenium

Basic thoughts for this framework There should have a BasePage.py to be the parent page and all the page object should inherit this class BasePage.py

Cactus 2 Mar 09, 2022
Test scripts etc. for experimental rollup testing

rollup node experiments Test scripts etc. for experimental rollup testing. untested, work in progress python -m venv venv source venv/bin/activate #

Diederik Loerakker 14 Jan 25, 2022
Subprocesses for Humans 2.0.

Delegator.py — Subprocesses for Humans 2.0 Delegator.py is a simple library for dealing with subprocesses, inspired by both envoy and pexpect (in fact

Amit Tripathi 1.6k Jan 04, 2023
frwk_51pwn is an open-sourced remote vulnerability testing and proof-of-concept development framework

frwk_51pwn Legal Disclaimer Usage of frwk_51pwn for attacking targets without prior mutual consent is illegal. frwk_51pwn is for security testing purp

51pwn 4 Apr 24, 2022
🎓 Stepik Academy Автоматизация тестирования на Python

🎓 Stepik Academy Автоматизация тестирования на Python Запуск тестов выполняется в командной строке: pytest -v --tb=line --language=en --alluredir=all

Sergey 1 Dec 03, 2021
Generates realistic traffic for load testing tile servers

Generates realistic traffic for load testing tile servers. Useful for: Measuring throughput, latency and concurrency of your tile serving stack. Ident

Brandon Liu 23 Dec 05, 2022
Instagram unfollowing bot. If this script is executed that specific accounts following will be reduced

Instagram-Unfollower-Bot Instagram unfollowing bot. If this script is executed that specific accounts following will be reduced.

Biswarup Bhattacharjee 1 Dec 24, 2021
Just for testing video streaming using pytgcalls.

tgvc-video-tests Just for testing video streaming using pytgcalls. Note: The features used in this repository is highly experimental and you might not

wrench 34 Dec 27, 2022
A Proof of concept of a modern python CLI with click, pydantic, rich and anyio

httpcli This project is a proof of concept of a modern python networking cli which can be simple and easy to maintain using some of the best packages

Kevin Tewouda 17 Nov 15, 2022
Selenium Manager

SeleniumManager I'm fed up with always having to struggle unnecessarily when I have to use Selenium on a new machine, so I made this little python mod

Victor Vague 1 Dec 24, 2021
Web testing library for Robot Framework

SeleniumLibrary Contents Introduction Keyword Documentation Installation Browser drivers Usage Extending SeleniumLibrary Community Versions History In

Robot Framework 1.2k Jan 03, 2023
Given some test cases, this program automatically queries the oracle and tests your Cshanty compiler!

The Diviner A complement to The Oracle for compilers class. Given some test cases, this program automatically queries the oracle and tests your compil

Grant Holmes 2 Jan 29, 2022
The Penetration Testers Framework (PTF) is a way for modular support for up-to-date tools.

The PenTesters Framework (PTF) is a Python script designed for Debian/Ubuntu/ArchLinux based distributions to create a similar and familiar distribution for Penetration Testing

trustedsec 4.5k Dec 28, 2022