sangha, pronounced "suhng-guh", is a social networking, booking platform where students and teachers can share their practice.

Related tags

Text Data & NLPsangha
Overview

Flask React Project

This is the backend for the Flask React project.

Getting started

  1. Clone this repository (only this branch)

    git clone https://github.com/appacademy-starters/python-project-starter.git
  2. Install dependencies

    pipenv install --dev -r dev-requirements.txt && pipenv install -r requirements.txt
  3. Create a .env file based on the example with proper settings for your development environment

  4. Setup your PostgreSQL user, password and database and make sure it matches your .env file

  5. Get into your pipenv, migrate your database, seed your database, and run your flask app

    pipenv shell
    flask db upgrade
    flask seed all
    flask run
  6. To run the React App in development, checkout the README inside the react-app directory.


IMPORTANT! If you add any python dependencies to your pipfiles, you'll need to regenerate your requirements.txt before deployment. You can do this by running:

pipenv lock -r > requirements.txt

ALSO IMPORTANT! psycopg2-binary MUST remain a dev dependency because you can't install it on apline-linux. There is a layer in the Dockerfile that will install psycopg2 (not binary) for us.


Deploy to Heroku

  1. Create a new project on Heroku

  2. Under Resources click "Find more add-ons" and add the add on called "Heroku Postgres"

  3. Install the Heroku CLI

  4. Run

    heroku login
  5. Login to the heroku container registry

    heroku container:login
  6. Update the REACT_APP_BASE_URL variable in the Dockerfile. This should be the full URL of your Heroku app: i.e. "https://flask-react-aa.herokuapp.com"

  7. Push your docker container to heroku from the root directory of your project. This will build the dockerfile and push the image to your heroku container registry

    heroku container:push web -a {NAME_OF_HEROKU_APP}
  8. Release your docker container to heroku

    heroku container:release web -a {NAME_OF_HEROKU_APP}
  9. set up your database:

    heroku run -a {NAME_OF_HEROKU_APP} flask db upgrade
    heroku run -a {NAME_OF_HEROKU_APP} flask seed all
  10. Under Settings find "Config Vars" and add any additional/secret .env variables.

  11. profit

Owner
Courtney Newcomer
| Full Stack Web Development | JS, Python, HTML, CSS |
Courtney Newcomer
Official implementation of MLP Singer: Towards Rapid Parallel Korean Singing Voice Synthesis

MLP Singer Official implementation of MLP Singer: Towards Rapid Parallel Korean Singing Voice Synthesis. Audio samples are available on our demo page.

Neosapience 103 Dec 23, 2022
Local cross-platform machine translation GUI, based on CTranslate2

DesktopTranslator Local cross-platform machine translation GUI, based on CTranslate2 Download Windows Installer You can either download a ready-made W

Yasmin Moslem 29 Jan 05, 2023
BookNLP, a natural language processing pipeline for books

BookNLP BookNLP is a natural language processing pipeline that scales to books and other long documents (in English), including: Part-of-speech taggin

654 Jan 02, 2023
A highly sophisticated sequence-to-sequence model for code generation

CoderX A proof-of-concept AI system by Graham Neubig (June 30, 2021). About CoderX CoderX is a retrieval-based code generation AI system reminiscent o

Graham Neubig 39 Aug 03, 2021
The official repository of the ISBI 2022 KNIGHT Challenge

KNIGHT The official repository holding the data for the ISBI 2022 KNIGHT Challenge About The KNIGHT Challenge asks teams to develop models to classify

Nicholas Heller 4 Jan 22, 2022
Repositório da disciplina no semestre 2021-2

Avisos! Nenhum aviso! Compiladores 1 Este é o Git da disciplina Compiladores 1. Aqui ficará o material produzido em sala de aula assim como tarefas, w

6 May 13, 2022
Implementing SimCSE(paper, official repository) using TensorFlow 2 and KR-BERT.

KR-BERT-SimCSE Implementing SimCSE(paper, official repository) using TensorFlow 2 and KR-BERT. Training Unsupervised python train_unsupervised.py --mi

Jeong Ukjae 27 Dec 12, 2022
Mlcode - Continuous ML API Integrations

mlcode Basic APIs for ML applications. Django REST Application Contains REST API

Sujith S 1 Jan 01, 2022
fastNLP: A Modularized and Extensible NLP Framework. Currently still in incubation.

fastNLP fastNLP是一款轻量级的自然语言处理(NLP)工具包,目标是快速实现NLP任务以及构建复杂模型。 fastNLP具有如下的特性: 统一的Tabular式数据容器,简化数据预处理过程; 内置多种数据集的Loader和Pipe,省去预处理代码; 各种方便的NLP工具,例如Embedd

fastNLP 2.8k Jan 01, 2023
The NewSHead dataset is a multi-doc headline dataset used in NHNet for training a headline summarization model.

This repository contains the raw dataset used in NHNet [1] for the task of News Story Headline Generation. The code of data processing and training is available under Tensorflow Models - NHNet.

Google Research Datasets 31 Jul 15, 2022
This is the code for the EMNLP 2021 paper AEDA: An Easier Data Augmentation Technique for Text Classification

The baseline code is for EDA: Easy Data Augmentation techniques for boosting performance on text classification tasks

Akbar Karimi 81 Dec 09, 2022
Bpe algorithm can finetune tokenizer - Bpe algorithm can finetune tokenizer

"# bpe_algorithm_can_finetune_tokenizer" this is an implyment for https://github

张博 1 Feb 02, 2022
An easy to use Natural Language Processing library and framework for predicting, training, fine-tuning, and serving up state-of-the-art NLP models.

Welcome to AdaptNLP A high level framework and library for running, training, and deploying state-of-the-art Natural Language Processing (NLP) models

Novetta 407 Jan 03, 2023
Code for Findings of ACL 2022 Paper "Sentiment Word Aware Multimodal Refinement for Multimodal Sentiment Analysis with ASR Errors"

SWRM Code for Findings of ACL 2022 Paper "Sentiment Word Aware Multimodal Refinement for Multimodal Sentiment Analysis with ASR Errors" Clone Clone th

14 Jan 03, 2023
This project uses word frequency and Term Frequency-Inverse Document Frequency to summarize a text.

Text Summarizer This project uses word frequency and Term Frequency-Inverse Document Frequency to summarize a text. Team Members This mini-project was

1 Nov 16, 2021
fastai ulmfit - Pretraining the Language Model, Fine-Tuning and training a Classifier

fast.ai ULMFiT with SentencePiece from pretraining to deployment Motivation: Why even bother with a non-BERT / Transformer language model? Short answe

Florian Leuerer 26 May 27, 2022
Grover is a model for Neural Fake News -- both generation and detectio

Grover is a model for Neural Fake News -- both generation and detection. However, it probably can also be used for other generation tasks.

Rowan Zellers 856 Dec 24, 2022
NLP - Machine learning

Flipkart-product-reviews NLP - Machine learning About Product reviews is an essential part of an online store like Flipkart’s branding and marketing.

Harshith VH 1 Oct 29, 2021
AIDynamicTextReader - A simple dynamic text reader based on Artificial intelligence

AI Dynamic Text Reader: This is a simple dynamic text reader based on Artificial

Md. Rakibul Islam 1 Jan 18, 2022
Python Implementation of ``Modeling the Influence of Verb Aspect on the Activation of Typical Event Locations with BERT'' (Findings of ACL: ACL 2021)

BERT-for-Surprisal Python Implementation of ``Modeling the Influence of Verb Aspect on the Activation of Typical Event Locations with BERT'' (Findings

7 Dec 05, 2022