MonoRec: Semi-Supervised Dense Reconstruction in Dynamic Environments from a Single Moving Camera

Related tags

Deep LearningMonoRec
Overview

MonoRec

Paper | Video (CVPR) | Video (Reconstruction) | Project Page

This repository is the official implementation of the paper:

MonoRec: Semi-Supervised Dense Reconstruction in Dynamic Environments from a Single Moving Camera

Felix Wimbauer*, Nan Yang*, Lukas Von Stumberg, Niclas Zeller and Daniel Cremers

CVPR 2021 (arXiv)

If you find our work useful, please consider citing our paper:

@InProceedings{wimbauer2020monorec,
  title = {{MonoRec}: Semi-Supervised Dense Reconstruction in Dynamic Environments from a Single Moving Camera},
  author = {Wimbauer, Felix and Yang, Nan and von Stumberg, Lukas and Zeller, Niclas and Cremers, Daniel},
  booktitle = {IEEE Conference on Computer Vision and Pattern Recognition (CVPR)},
  year = {2021},
}

🏗️ ️ Setup

The conda environment for this project can be setup by running the following command:

conda env create -f environment.yml

🏃 Running the Example Script

We provide a sample from the KITTI Odometry test set and a script to run MonoRec on it in example/. To download the pretrained model and put it into the right place, run download_model.sh. You can manually do this by can by downloading the weights from here and unpacking the file to saved/checkpoints/monorec_depth_ref.pth. The example script will plot the keyframe, depth prediction and mask prediction.

cd example
python test_monorec.py

🗃️ Data

In all of our experiments we used the KITTI Odometry dataset for training. For additional evaluations, we used the KITTI, Oxford RobotCar, TUM Mono-VO and TUM RGB-D datasets. All datapaths can be specified in the respective configuration files. In our experiments, we put all datasets into a seperate folder ../data.

KITTI Odometry

To setup KITTI Odometry, download the color images and calibration files from the official website (around 145 GB). Instead of the given velodyne laser data files, we use the improved ground truth depth for evaluation, which can be downloaded from here.

Unzip the color images and calibration files into ../data. The lidar depth maps can be extracted into the given folder structure by running data_loader/scripts/preprocess_kitti_extract_annotated_depth.py.

For training and evaluation, we use the poses estimated by Deep Virtual Stereo Odometry (DVSO). They can be downloaded from here and should be placed under ../data/{kitti_path}/poses_dso. This folder structure is ensured when unpacking the zip file in the {kitti_path} directory.

The auxiliary moving object masks can be downloaded from here. They should be placed under ../data/{kitti_path}/sequences/{seq_num}/mvobj_mask. This folder structure is ensured when unpacking the zip file in the {kitti_path} directory.

Oxford RobotCar

To setup Oxford RobotCar, download the camera model files and the large sample from the official website. Code, as well as, camera extrinsics need to be downloaded from the official GitHub repository. Please move the content of the python folder to data_loaders/oxford_robotcar/. extrinsics/, models/ and sample/ need to be moved to ../data/oxford_robotcar/. Note that for poses we use the official visual odometry poses, which are not provided in the large sample. They need to be downloaded manually from the raw dataset and unpacked into the sample folder.

TUM Mono-VO

Unfortunately, TUM Mono-VO images are provided only in the original, distorted form. Therefore, they need to be undistorted first before fed into MonoRec. To obtain poses for the sequences, we run the publicly available version of Direct Sparse Odometry.

TUM RGB-D

The official sequences can be downloaded from the official website and need to be unpacked under ../data/tumrgbd/{sequence_name}. Note that our provided dataset implementation assumes intrinsics from fr3 sequences. Note that the data loader for this dataset also relies on the code from the Oxford Robotcar dataset.

🏋️ Training & Evaluation

Please stay tuned! Training code will be published soon!

We provide checkpoints for each training stage:

Training stage Download
Depth Bootstrap Link
Mask Bootstrap Link
Mask Refinement Link
Depth Refinement (final model) Link

Run download_model.sh to download the final model. It will automatically get moved to saved/checkpoints.

To reproduce the evaluation results on different datasets, run the following commands:

python evaluate.py --config configs/evaluate/eval_monorec.json        # KITTI Odometry
python evaluate.py --config configs/evaluate/eval_monorec_oxrc.json   # Oxford Robotcar

☁️ Pointclouds

To reproduce the pointclouds depicted in the paper and video, use the following commands:

python create_pointcloud.py --config configs/test/pointcloud_monorec.json       # KITTI Odometry
python create_pointcloud.py --config configs/test/pointcloud_monorec_oxrc.json  # Oxford Robotcar
python create_pointcloud.py --config configs/test/pointcloud_monorec_tmvo.json  # TUM Mono-VO
Owner
Felix Wimbauer
M.Sc. Computer Science, Oxford, TUM, NUS
Felix Wimbauer
Invert and perturb GAN images for test-time ensembling

GAN Ensembling Project Page | Paper | Bibtex Ensembling with Deep Generative Views. Lucy Chai, Jun-Yan Zhu, Eli Shechtman, Phillip Isola, Richard Zhan

Lucy Chai 93 Dec 08, 2022
PyTorch reimplementation of the paper Involution: Inverting the Inherence of Convolution for Visual Recognition [CVPR 2021].

Involution: Inverting the Inherence of Convolution for Visual Recognition Unofficial PyTorch reimplementation of the paper Involution: Inverting the I

Christoph Reich 100 Dec 01, 2022
ZEBRA: Zero Evidence Biometric Recognition Assessment

ZEBRA: Zero Evidence Biometric Recognition Assessment license: LGPLv3 - please reference our paper version: 2020-06-11 author: Andreas Nautsch (EURECO

Voice Privacy Challenge 2 Dec 12, 2021
Airbus Ship Detection Challenge

Airbus Ship Detection Challenge This is an open solution to the Airbus Ship Detection Challenge. Our goals We are building entirely open solution to t

minerva.ml 55 Nov 29, 2022
PyTorch Implementation of CycleGAN and SSGAN for Domain Transfer (Minimal)

MNIST-to-SVHN and SVHN-to-MNIST PyTorch Implementation of CycleGAN and Semi-Supervised GAN for Domain Transfer. Prerequites Python 3.5 PyTorch 0.1.12

Yunjey Choi 401 Dec 30, 2022
Pytorch GUI(demo) for iVOS(interactive VOS) and GIS (Guided iVOS)

GUI for iVOS(interactive VOS) and GIS (Guided iVOS) GUI Implementation of CVPR2021 paper "Guided Interactive Video Object Segmentation Using Reliabili

Yuk Heo 13 Dec 09, 2022
a practicable framework used in Deep Learning. So far UDL only provide DCFNet implementation for the ICCV paper (Dynamic Cross Feature Fusion for Remote Sensing Pansharpening)

UDL UDL is a practicable framework used in Deep Learning (computer vision). Benchmark codes, results and models are available in UDL, please contact @

Xiao Wu 11 Sep 30, 2022
Official implementation of CATs: Cost Aggregation Transformers for Visual Correspondence NeurIPS'21

CATs: Cost Aggregation Transformers for Visual Correspondence NeurIPS'21 For more information, check out the paper on [arXiv]. Training with different

Sunghwan Hong 120 Jan 04, 2023
Py4fi2nd - Jupyter Notebooks and code for Python for Finance (2nd ed., O'Reilly) by Yves Hilpisch.

Python for Finance (2nd ed., O'Reilly) This repository provides all Python codes and Jupyter Notebooks of the book Python for Finance -- Mastering Dat

Yves Hilpisch 1k Jan 05, 2023
Encode and decode text application

Text Encoder and Decoder Encode and decode text in many ways using this application! Encode in: ASCII85 Base85 Base64 Base32 Base16 Url MD5 Hash SHA-1

Alice 1 Feb 12, 2022
[CVPR 2022] "The Principle of Diversity: Training Stronger Vision Transformers Calls for Reducing All Levels of Redundancy" by Tianlong Chen, Zhenyu Zhang, Yu Cheng, Ahmed Awadallah, Zhangyang Wang

The Principle of Diversity: Training Stronger Vision Transformers Calls for Reducing All Levels of Redundancy Codes for this paper: [CVPR 2022] The Pr

VITA 16 Nov 26, 2022
Encoding Causal Macrovariables

Encoding Causal Macrovariables Data Natural climate data ('El Nino') Self-generated data ('Simulated') Experiments Detecting macrovariables through th

Benedikt Höltgen 3 Jul 31, 2022
Official Implementation of VAT

Semantic correspondence Few-shot segmentation Cost Aggregation Is All You Need for Few-Shot Segmentation For more information, check out project [Proj

Hamacojr 114 Dec 27, 2022
Dense Passage Retriever - is a set of tools and models for open domain Q&A task.

Dense Passage Retrieval Dense Passage Retrieval (DPR) - is a set of tools and models for state-of-the-art open-domain Q&A research. It is based on the

Meta Research 1.1k Jan 03, 2023
The ARCA23K baseline system

ARCA23K Baseline System This is the source code for the baseline system associated with the ARCA23K dataset. Details about ARCA23K and the baseline sy

4 Jul 02, 2022
A PyTorch implementation of "Graph Classification Using Structural Attention" (KDD 2018).

GAM ⠀⠀ A PyTorch implementation of Graph Classification Using Structural Attention (KDD 2018). Abstract Graph classification is a problem with practic

Benedek Rozemberczki 259 Dec 05, 2022
This repository is the official implementation of Open Rule Induction. This paper has been accepted to NeurIPS 2021.

Open Rule Induction This repository is the official implementation of Open Rule Induction. This paper has been accepted to NeurIPS 2021. Abstract Rule

Xingran Chen 16 Nov 14, 2022
Riemannian Geometry for Molecular Surface Approximation (RGMolSA)

Riemannian Geometry for Molecular Surface Approximation (RGMolSA) Introduction Ligand-based virtual screening aims to reduce the cost and duration of

11 Nov 15, 2022
DeepLM: Large-scale Nonlinear Least Squares on Deep Learning Frameworks using Stochastic Domain Decomposition (CVPR 2021)

DeepLM DeepLM: Large-scale Nonlinear Least Squares on Deep Learning Frameworks using Stochastic Domain Decomposition (CVPR 2021) Run Please install th

Jingwei Huang 130 Dec 02, 2022
This is the official repository for our paper: ''Pruning Self-attentions into Convolutional Layers in Single Path''.

Pruning Self-attentions into Convolutional Layers in Single Path This is the official repository for our paper: Pruning Self-attentions into Convoluti

Zhuang AI Group 77 Dec 26, 2022