MonoRec: Semi-Supervised Dense Reconstruction in Dynamic Environments from a Single Moving Camera

Related tags

Deep LearningMonoRec
Overview

MonoRec

Paper | Video (CVPR) | Video (Reconstruction) | Project Page

This repository is the official implementation of the paper:

MonoRec: Semi-Supervised Dense Reconstruction in Dynamic Environments from a Single Moving Camera

Felix Wimbauer*, Nan Yang*, Lukas Von Stumberg, Niclas Zeller and Daniel Cremers

CVPR 2021 (arXiv)

If you find our work useful, please consider citing our paper:

@InProceedings{wimbauer2020monorec,
  title = {{MonoRec}: Semi-Supervised Dense Reconstruction in Dynamic Environments from a Single Moving Camera},
  author = {Wimbauer, Felix and Yang, Nan and von Stumberg, Lukas and Zeller, Niclas and Cremers, Daniel},
  booktitle = {IEEE Conference on Computer Vision and Pattern Recognition (CVPR)},
  year = {2021},
}

🏗️ ️ Setup

The conda environment for this project can be setup by running the following command:

conda env create -f environment.yml

🏃 Running the Example Script

We provide a sample from the KITTI Odometry test set and a script to run MonoRec on it in example/. To download the pretrained model and put it into the right place, run download_model.sh. You can manually do this by can by downloading the weights from here and unpacking the file to saved/checkpoints/monorec_depth_ref.pth. The example script will plot the keyframe, depth prediction and mask prediction.

cd example
python test_monorec.py

🗃️ Data

In all of our experiments we used the KITTI Odometry dataset for training. For additional evaluations, we used the KITTI, Oxford RobotCar, TUM Mono-VO and TUM RGB-D datasets. All datapaths can be specified in the respective configuration files. In our experiments, we put all datasets into a seperate folder ../data.

KITTI Odometry

To setup KITTI Odometry, download the color images and calibration files from the official website (around 145 GB). Instead of the given velodyne laser data files, we use the improved ground truth depth for evaluation, which can be downloaded from here.

Unzip the color images and calibration files into ../data. The lidar depth maps can be extracted into the given folder structure by running data_loader/scripts/preprocess_kitti_extract_annotated_depth.py.

For training and evaluation, we use the poses estimated by Deep Virtual Stereo Odometry (DVSO). They can be downloaded from here and should be placed under ../data/{kitti_path}/poses_dso. This folder structure is ensured when unpacking the zip file in the {kitti_path} directory.

The auxiliary moving object masks can be downloaded from here. They should be placed under ../data/{kitti_path}/sequences/{seq_num}/mvobj_mask. This folder structure is ensured when unpacking the zip file in the {kitti_path} directory.

Oxford RobotCar

To setup Oxford RobotCar, download the camera model files and the large sample from the official website. Code, as well as, camera extrinsics need to be downloaded from the official GitHub repository. Please move the content of the python folder to data_loaders/oxford_robotcar/. extrinsics/, models/ and sample/ need to be moved to ../data/oxford_robotcar/. Note that for poses we use the official visual odometry poses, which are not provided in the large sample. They need to be downloaded manually from the raw dataset and unpacked into the sample folder.

TUM Mono-VO

Unfortunately, TUM Mono-VO images are provided only in the original, distorted form. Therefore, they need to be undistorted first before fed into MonoRec. To obtain poses for the sequences, we run the publicly available version of Direct Sparse Odometry.

TUM RGB-D

The official sequences can be downloaded from the official website and need to be unpacked under ../data/tumrgbd/{sequence_name}. Note that our provided dataset implementation assumes intrinsics from fr3 sequences. Note that the data loader for this dataset also relies on the code from the Oxford Robotcar dataset.

🏋️ Training & Evaluation

Please stay tuned! Training code will be published soon!

We provide checkpoints for each training stage:

Training stage Download
Depth Bootstrap Link
Mask Bootstrap Link
Mask Refinement Link
Depth Refinement (final model) Link

Run download_model.sh to download the final model. It will automatically get moved to saved/checkpoints.

To reproduce the evaluation results on different datasets, run the following commands:

python evaluate.py --config configs/evaluate/eval_monorec.json        # KITTI Odometry
python evaluate.py --config configs/evaluate/eval_monorec_oxrc.json   # Oxford Robotcar

☁️ Pointclouds

To reproduce the pointclouds depicted in the paper and video, use the following commands:

python create_pointcloud.py --config configs/test/pointcloud_monorec.json       # KITTI Odometry
python create_pointcloud.py --config configs/test/pointcloud_monorec_oxrc.json  # Oxford Robotcar
python create_pointcloud.py --config configs/test/pointcloud_monorec_tmvo.json  # TUM Mono-VO
Owner
Felix Wimbauer
M.Sc. Computer Science, Oxford, TUM, NUS
Felix Wimbauer
An open source Python package for plasma science that is under development

PlasmaPy PlasmaPy is an open source, community-developed Python 3.7+ package for plasma science. PlasmaPy intends to be for plasma science what Astrop

PlasmaPy 444 Jan 07, 2023
ICCV2021 - Mining Contextual Information Beyond Image for Semantic Segmentation

Introduction The official repository for "Mining Contextual Information Beyond Image for Semantic Segmentation". Our full code has been merged into ss

55 Nov 09, 2022
This is the official implementation for "Do Transformers Really Perform Bad for Graph Representation?".

Graphormer By Chengxuan Ying, Tianle Cai, Shengjie Luo, Shuxin Zheng*, Guolin Ke, Di He*, Yanming Shen and Tie-Yan Liu. This repo is the official impl

Microsoft 1.3k Dec 29, 2022
Official Python implementation of the 'Sparse deconvolution'-v0.3.0

Sparse deconvolution Python v0.3.0 Official Python implementation of the 'Sparse deconvolution', and the CPU (NumPy) and GPU (CuPy) calculation backen

Weisong Zhao 23 Dec 28, 2022
[NeurIPS 2021 Spotlight] Code for Learning to Compose Visual Relations

Learning to Compose Visual Relations This is the pytorch codebase for the NeurIPS 2021 Spotlight paper Learning to Compose Visual Relations. Demo Imag

Nan Liu 88 Jan 04, 2023
Taking A Closer Look at Domain Shift: Category-level Adversaries for Semantics Consistent Domain Adaptation

Taking A Closer Look at Domain Shift: Category-level Adversaries for Semantics Consistent Domain Adaptation (CVPR2019) This is a pytorch implementatio

Yawei Luo 280 Jan 01, 2023
Code for ICLR 2021 Paper, "Anytime Sampling for Autoregressive Models via Ordered Autoencoding"

Anytime Autoregressive Model Anytime Sampling for Autoregressive Models via Ordered Autoencoding , ICLR 21 Yilun Xu, Yang Song, Sahaj Gara, Linyuan Go

Yilun Xu 22 Sep 08, 2022
SCU OlympicsRunning Baseline

Competition 1v1 running Environment check details in Jidi Competition RLChina2021智能体竞赛 做出的修改: 奖励重塑:修改了环境,重新设置了奖励的分配,使得奖励组成不只有零和博弈,还有探索环境的奖励。 算法微调:修改了官

ZiSeoi Wong 2 Nov 23, 2021
Neural Contours: Learning to Draw Lines from 3D Shapes (CVPR2020)

Neural Contours: Learning to Draw Lines from 3D Shapes This repository contains the PyTorch implementation for CVPR 2020 Paper "Neural Contours: Learn

93 Dec 16, 2022
Official implementation of deep-multi-trajectory-based single object tracking (IEEE T-CSVT 2021).

DeepMTA_PyTorch Officical PyTorch Implementation of "Dynamic Attention-guided Multi-TrajectoryAnalysis for Single Object Tracking", Xiao Wang, Zhe Che

Xiao Wang(王逍) 7 Dec 03, 2022
Code for the paper "Unsupervised Contrastive Learning of Sound Event Representations", ICASSP 2021.

Unsupervised Contrastive Learning of Sound Event Representations This repository contains the code for the following paper. If you use this code or pa

Eduardo Fonseca 81 Dec 22, 2022
A small library for creating and manipulating custom JAX Pytree classes

Treeo A small library for creating and manipulating custom JAX Pytree classes Light-weight: has no dependencies other than jax. Compatible: Treeo Tree

Cristian Garcia 58 Nov 23, 2022
Face-Recognition-Attendence-System - This face recognition Attendence system using Python

Face-Recognition-Attendence-System I have developed this face recognition Attend

Riya Gupta 4 May 10, 2022
A highly modular PyTorch framework with a focus on Neural Architecture Search (NAS).

UniNAS A highly modular PyTorch framework with a focus on Neural Architecture Search (NAS). under development (which happens mostly on our internal Gi

Cognitive Systems Research Group 19 Nov 23, 2022
Fader Networks: Manipulating Images by Sliding Attributes - NIPS 2017

FaderNetworks PyTorch implementation of Fader Networks (NIPS 2017). Fader Networks can generate different realistic versions of images by modifying at

Facebook Research 753 Dec 23, 2022
GuideDog is an AI/ML-based mobile app designed to assist the lives of the visually impaired, 100% voice-controlled

Guidedog Authors: Kyuhee Jo, Steven Gunarso, Jacky Wang, Raghav Sharma GuideDog is an AI/ML-based mobile app designed to assist the lives of the visua

Kyuhee Jo 5 Nov 24, 2021
Code and training data for our ECCV 2016 paper on Unsupervised Learning

Shuffle and Learn (Shuffle Tuple) Created by Ishan Misra Based on the ECCV 2016 Paper - "Shuffle and Learn: Unsupervised Learning using Temporal Order

Ishan Misra 44 Dec 08, 2021
This is the official code of L2G, Unrolling and Recurrent Unrolling in Learning to Learn Graph Topologies.

Learning to Learn Graph Topologies This is the official code of L2G, Unrolling and Recurrent Unrolling in Learning to Learn Graph Topologies. Requirem

Stacy X PU 16 Dec 09, 2022
Official pytorch implementation for Learning to Listen: Modeling Non-Deterministic Dyadic Facial Motion (CVPR 2022)

Learning to Listen: Modeling Non-Deterministic Dyadic Facial Motion This repository contains a pytorch implementation of "Learning to Listen: Modeling

50 Dec 17, 2022
An attempt at the implementation of Glom, Geoffrey Hinton's new idea that integrates neural fields, predictive coding, top-down-bottom-up, and attention (consensus between columns)

GLOM - Pytorch (wip) An attempt at the implementation of Glom, Geoffrey Hinton's new idea that integrates neural fields, predictive coding,

Phil Wang 173 Dec 14, 2022