2021 Real Robot Challenge Phase2 attemp

Overview

Real_Robot_Challenge_Phase2_AE_attemp

We(team name:thriftysnipe) are the first place winner of Phase1 in 2021 Real Robot Challenge.
Please see this page for more details: https://real-robot-challenge.com/leaderboard
To see more details about out Phase1 works: https://github.com/wq13552463699/Real_Robot_challenge
We were granted the access to Phase 2.

I am sorry, the project is too complex with too much large files, It is too hard to upload them all on Github. I just attached a part of the core code here for you to take a quick lreview. If you think my attempts is approriate, you can go to this Google Drive to download the full project file(all codes, results, trained models, environmental files,.etc):
https://drive.google.com/file/d/14vjCrWU6vzMdXxVSR2FeskMvuQpgqWqM/view?usp=sharing

RRC phase2 task description:

Randomly place 25 dices with the size of 0.01x0.01x0.01m in the environment. Use own controller to drive the three-finger robot to rearrange the dice to a specific pattern. Unfortunately, due to the set task is too difficult, no team could complete the task on the actual robot, so all teams with record are awarded third place in this phase. But I think our attempt has a reference value, if later scholars conduct related research, our method may be useful.

Our considerations:

We consider using a reinforcement learning algorithm as the controller in this phase. However, in this phase, information that can play as observations, such as coordinates and orientation of the dices, cannot be obtained from the environment directly but they are crucial for RL to run.
The alternative observations we can use are the images of the three cameras set in 3 different angles in the environment and their segmentation masks. We picked segmentation masks rather than the raw images since the attendance of noise and redundancy in the raw images were too much. Please see the following segmentation mask example(RGB's 3 channels represent segmentation masks from 3 different angles).

The segmentation masks have the dimension of 270x270x3, if directly passing it to the RL agent, which would lead to computational explosion and hard to converge. Hence, we planned to use some means to extract the principal components that can play as observations from it. In addition, the observation value also includes readable read-robot data(joint angle of the robot arm, end effector position, end effector speed, etc.).

Segmentation mask dimensionality reduction

This is the most important part of this task. We tried different methods, such as GAN, VAE, AE, to extract the principal conponents from the images. The quality of data dimensionality reduction can be easily seem from the discripency of reconstructed and oringinal images or the loss curves. After many trials(adjusting hyperparameters, network structure, depth, etc.), we got different trained VAE, GAN and AE models. We conducted offline tests on the obtained model and compared the results, we were surprised to find that the AE performed the best. When the latent of AE is 384, the quality of the reconstructed image is the best. The result is shown in the figure below.

The loss function also converges to an acceptable range:

Build up observation and trian RL agent.

We use the best AE encoder to deal with the segmentation masks to generate the observation and stitch with the readable data. The structure of the overall obervation is shown as follow:
We fed the above observations to several current cutting-edge model based and model free reinforcement learning algorithms, including DDPG+HER, PPO, SLAC, PlaNet and Dreamer. We thought it would work and enable the agent to learn for somewhat anyway. But it is a pity that after many attempts, the model still didn't have any trend to converge. Due to time limited, our attempts were over here.

Some reasons might lead to fail

  1. We used AE as the observation model. Although the AE's dimensionality reduction capability were the best, the latent space of AE were disordered and didn't make sense to RL agent. The observations passed to the RL must be fixed and orderly. Continuous delivery of unfixed data caused a dimensional disaster. For example, the third number in the observation vector passed at t1 represents 'infos of the 1st dice', and the number on the same position at t2 represents the 'infos of the 3rd dice'. This disorderly change with time makes RL very confused.
  2. The extracted latent space from segmentation mask dominates the observations, making RL ignore the existence of robots. The latent space size is 384, but which for the robot data is 27. The two are far apart, and there is a big data bias.
  3. Robot arm blocked the dices, segmentation masks can only represent a part of the dice. This problem cannot be avoided and can only be solved by more powerful image processing technology. This is also a major challenge in the current Image-based RL industry

Contribution

Pull requests are welcome. For major changes, please open an issue first to discuss what you would like to change. Please make sure to update tests as appropriate.

Owner
Qiang Wang
PhD at UCD. Research interest: Reinforcement Learning; Computer vision&Touch; Representation learning
Qiang Wang
This repo uses a stereo camera and gray-code-based structured light to realize dense 3D reconstruction.

Structured-light-stereo This repo uses a stereo camera and gray-code-based structured light to realize dense 3D reconstruction. . How to use: STEP 1:

FEI 20 Dec 31, 2022
BMP180 sensor driver for Home Assistant used in Raspberry Pi

BMP180 sensor driver for Home Assistant used in Raspberry Pi Custom component BMP180 sensor for Home Assistant. Copy the content of this directory to

747Developments 1 Dec 17, 2021
AERO 421: Spacecraft Attitude, Dynamics, and Control Final Project.

AERO - 421 Final Project Redevelopment Spacecraft Attitude, Dynamics, and Control: Simulation to determine and control a satellite's attitude in LEO.

Gagandeep Thapar 3 Dec 16, 2022
Segger Embedded Studio project for building & debugging Flipper Zero firmware.

Segger Embedded Studio project for Flipper Zero firmware Установка Добавить данный репозиторий в качестве сабмодуля в корень локальной копии репозитор

25 Dec 28, 2022
Point Density-Aware Voxels for LiDAR 3D Object Detection (CVPR 2022)

PDV PDV is LiDAR 3D object detection method. This repository is based off [OpenPCDet]. Point Density-Aware Voxels for LiDAR 3D Object Detection Jordan

Toronto Robotics and AI Laboratory 114 Dec 21, 2022
FHEM Connector for FHT Heating devices

home-assistant-fht from: https://github.com/Rsclub22 FHEM Connector for FHT Heating devices (connected via FHEM) Requires FHEM to work You can find FH

5 Dec 01, 2022
Pinion — Nice-looking interactive diagrams for KiCAD PCBs

Pinion — Nice-looking interactive diagrams for KiCAD PCBs Pinion is a simple tool that allows you to make a nice-looking pinout diagrams for your PCBs

Jan Mrázek 297 Jan 06, 2023
A Raspberry Pi Pico powered Macro board, like a Streamdeck but cheaper and simpler.

Env-MCRO A Raspberry Pi Pico powered Macro board, like a Streamdeck but cheaper and simpler. (btw this image is a bit outdated, some of the silkscreen

EnviousData 68 Oct 14, 2022
Simple python3 implementation of microKanren with lots of type annotations for clarity

MicroKanren-py This is (yet another) python implementation of microKanren. It's a reasonably 1:1 translation of the code provided in the paper, but ev

Erik Derohanian 3 Dec 10, 2022
🎃 Some spooky code samples to hack yourself a pumpkin 👻

🎃 Tech Or Treat 👻 It's spooky season for those who celebrate Halloween, and to get in the spirit (spirit - get it? 👻 ) we thought it would be fun t

Jim Bennett 5 Feb 07, 2022
A LiteX project which builds a SoC with DRAM / HDIM output via the GPDI SYZYGY addon.

ButterStick GPDI LiteX demo A LiteX project which builds a SoC with DRAM / HDIM output via the GPDI SYZYGY addon. Getting started Connect GPDI board t

4 Nov 21, 2021
Python module for controlling Broadlink RM2/3 (Pro) remote controls, A1 sensor platforms and SP2/3 smartplugs

Python module for controlling Broadlink RM2/3 (Pro) remote controls, A1 sensor platforms and SP2/3 smartplugs

Matthew Garrett 1.2k Jan 04, 2023
Trajectory optimization package for Mini-Pupper robot

Trajectory optimization package for Mini-Pupper robot Purpose of this repository is to provide low-torque and low-impact trajectory for Mini-Pupper qu

Sotaro Katayama 38 Aug 17, 2022
A custom mechanical keyboard inspired by the CFTKB Mysterium

Env-KB A custom mechanical keyboard inspired by the CFTKB Mysterium Build Guide and Parts List What is to do? Right now for the first 5 PCBs I have, i

EnviousData 203 Jan 04, 2023
Example Python code for building RPi-controlled robotic systems

RPi Example Code Example Python code for building RPi-controlled robotic systems These python files have been compiled / developed by the Neurobionics

Elliott Rouse 2 Feb 04, 2022
Terkin is a flexible data logger application for MicroPython and CPython environments.

Terkin Data logging for humans, written in MicroPython. Documentation: https://terkin.org/ Source Code: https://github.com/hiveeyes/terkin-datalogger

hiveeyes 45 Dec 15, 2022
Home-Assistant MQTT bridge for Panasonic Comfort Cloud

Panasonic Comfort Cloud MQTT Bridge Home-Assistant MQTT bridge for Panasonic Comfort Cloud. Note: Currently this brige is a one evening prototype proj

Santtu Järvi 2 Jan 04, 2023
Python Wrapper for Homeassistant's REST API

HomeassistantAPI Python Wrapper for Homeassistant's REST API Please ⭐️ the repo if you find this project useful or cool! Here is a quick example. from

Nate 29 Dec 31, 2022
Like htop (CPU and memory usage), but for your case LEDs. 😄

Like htop (CPU and memory usage), but for your case LEDs. 😄

Derek Anderson 3 Dec 08, 2021
LifeSaver automatically, periodically saves USB flash drive data into the PC

LifeSaver automatically, periodically saves USB flash drive data into the PC. Theoriticaly it will work with any any connected drive ex - Hard Disk ,SSD ... But, can't handle Backing up multipatition

siddharth dhaka 4 Sep 26, 2021