2021 Real Robot Challenge Phase2 attemp

Overview

Real_Robot_Challenge_Phase2_AE_attemp

We(team name:thriftysnipe) are the first place winner of Phase1 in 2021 Real Robot Challenge.
Please see this page for more details: https://real-robot-challenge.com/leaderboard
To see more details about out Phase1 works: https://github.com/wq13552463699/Real_Robot_challenge
We were granted the access to Phase 2.

I am sorry, the project is too complex with too much large files, It is too hard to upload them all on Github. I just attached a part of the core code here for you to take a quick lreview. If you think my attempts is approriate, you can go to this Google Drive to download the full project file(all codes, results, trained models, environmental files,.etc):
https://drive.google.com/file/d/14vjCrWU6vzMdXxVSR2FeskMvuQpgqWqM/view?usp=sharing

RRC phase2 task description:

Randomly place 25 dices with the size of 0.01x0.01x0.01m in the environment. Use own controller to drive the three-finger robot to rearrange the dice to a specific pattern. Unfortunately, due to the set task is too difficult, no team could complete the task on the actual robot, so all teams with record are awarded third place in this phase. But I think our attempt has a reference value, if later scholars conduct related research, our method may be useful.

Our considerations:

We consider using a reinforcement learning algorithm as the controller in this phase. However, in this phase, information that can play as observations, such as coordinates and orientation of the dices, cannot be obtained from the environment directly but they are crucial for RL to run.
The alternative observations we can use are the images of the three cameras set in 3 different angles in the environment and their segmentation masks. We picked segmentation masks rather than the raw images since the attendance of noise and redundancy in the raw images were too much. Please see the following segmentation mask example(RGB's 3 channels represent segmentation masks from 3 different angles).

The segmentation masks have the dimension of 270x270x3, if directly passing it to the RL agent, which would lead to computational explosion and hard to converge. Hence, we planned to use some means to extract the principal components that can play as observations from it. In addition, the observation value also includes readable read-robot data(joint angle of the robot arm, end effector position, end effector speed, etc.).

Segmentation mask dimensionality reduction

This is the most important part of this task. We tried different methods, such as GAN, VAE, AE, to extract the principal conponents from the images. The quality of data dimensionality reduction can be easily seem from the discripency of reconstructed and oringinal images or the loss curves. After many trials(adjusting hyperparameters, network structure, depth, etc.), we got different trained VAE, GAN and AE models. We conducted offline tests on the obtained model and compared the results, we were surprised to find that the AE performed the best. When the latent of AE is 384, the quality of the reconstructed image is the best. The result is shown in the figure below.

The loss function also converges to an acceptable range:

Build up observation and trian RL agent.

We use the best AE encoder to deal with the segmentation masks to generate the observation and stitch with the readable data. The structure of the overall obervation is shown as follow:
We fed the above observations to several current cutting-edge model based and model free reinforcement learning algorithms, including DDPG+HER, PPO, SLAC, PlaNet and Dreamer. We thought it would work and enable the agent to learn for somewhat anyway. But it is a pity that after many attempts, the model still didn't have any trend to converge. Due to time limited, our attempts were over here.

Some reasons might lead to fail

  1. We used AE as the observation model. Although the AE's dimensionality reduction capability were the best, the latent space of AE were disordered and didn't make sense to RL agent. The observations passed to the RL must be fixed and orderly. Continuous delivery of unfixed data caused a dimensional disaster. For example, the third number in the observation vector passed at t1 represents 'infos of the 1st dice', and the number on the same position at t2 represents the 'infos of the 3rd dice'. This disorderly change with time makes RL very confused.
  2. The extracted latent space from segmentation mask dominates the observations, making RL ignore the existence of robots. The latent space size is 384, but which for the robot data is 27. The two are far apart, and there is a big data bias.
  3. Robot arm blocked the dices, segmentation masks can only represent a part of the dice. This problem cannot be avoided and can only be solved by more powerful image processing technology. This is also a major challenge in the current Image-based RL industry

Contribution

Pull requests are welcome. For major changes, please open an issue first to discuss what you would like to change. Please make sure to update tests as appropriate.

Owner
Qiang Wang
PhD at UCD. Research interest: Reinforcement Learning; Computer vision&Touch; Representation learning
Qiang Wang
OpenStickFirmware is open source software designed to handle any and all tasks required in a custom Fight Stick

OpenStickFirmware is open source software designed to handle any and all tasks required in a custom Fight Stick. It can handle being the brains of your entire stick, or just handling the bells and wh

Sleep Unit 23 Nov 24, 2022
Python library to interact with the GCE Electronics IPX800 device

A python library to control a GCE-Electronics IPX800 V4 device through its API.

Marc-Aurèle Brothier 2 Oct 20, 2021
Windhager myComfort custom component for Home Assistant

Windhager myComfort custom component for Home Assistant

5 Apr 27, 2022
FHEM Connector for FHT Heating devices

home-assistant-fht from: https://github.com/Rsclub22 FHEM Connector for FHT Heating devices (connected via FHEM) Requires FHEM to work You can find FH

5 Dec 01, 2022
A install script for installing qtile and my configs on Raspberry Pi OS

QPI OS - Qtile + Raspberry PI OS Qtile + Raspberry Pi OS :) Installation Run this command in the terminal

RPICoder 3 Dec 19, 2021
Create a low powered, renewable generation forecast display with a Raspberry Pi Zero & Inky wHAT.

GB Renewable Forecast Display This Raspberry Pi powered eInk display aims to give you a quick way to time your home energy usage to help balance the g

Andy Brace 32 Jul 02, 2022
A Home Assistant integration for Solaredge inverters

A Home Assistant integration for Solaredge inverters. Supports multiple inverters chained through RS485.

Seth 50 Dec 23, 2022
Detic ros - A simple ROS wrapper for Detic instance segmentation using pre-trained dataset

Detic ros - A simple ROS wrapper for Detic instance segmentation using pre-trained dataset

Hirokazu Ishida 12 Nov 19, 2022
Designed and coded a password manager in Python with Arduino integration

Designed and coded a password manager in Python with Arduino integration. The Program uses a master user to login, and stores account data such as usernames and passwords to the master user. While lo

Noah Colbourne 1 Jan 16, 2022
Monorepo for my Raspberry Pi dashboard and GPS satellite listener.

🥧 pi dashboard My blog post: Listening to Satellites with my Raspberry Pi This is the monorepo for my Raspberry Pi dashboard!

Andrew Healey 27 Jun 08, 2022
Alarm Control Panel component for Zigbee Keypads using action_transaction field

hass_transaction_alarm_panel Alarm Control Panel component for Zigbee Keypads using action_transaction field. Works together with zigbee2mqtt Supporte

Konstantin 4 Jun 09, 2022
Raspberry Pi Pico development platform for PlatformIO

Raspberry Pi Pico development platform for PlatformIO A few words in the beginning Before experimental please Reinstall the platform Version: 1.0.0 Th

Georgi Angelov 160 Dec 23, 2022
a library for using WS2812b leds (aka neopixels) with Raspberry Pi Pico

pico_ws2812b a library for using WS2812b leds (aka neopixels) with Raspberry Pi Pico You'll first need to save the ws2812b.py file to your device (for

76 Nov 25, 2022
Bucatini: a soft PIPE PHY for FPGA SerDes

Bucatini: a soft PIPE PHY for FPGA SerDes Bucatini is a noodly gateware layer capable of transforming an FPGA SerDes into a PIPE PHY, allowing you to

Great Scott Gadgets 28 Dec 02, 2022
Mini Pupper - Open-Source,ROS Robot Dog Kit

Mini Pupper - Open-Source,ROS Robot Dog Kit

MangDang 747 Dec 28, 2022
Technical Answers to Real-World Problems. Evolution of Watering Manually to Watering Automatically.

Automatic Watering System using Soil Moisture Sensor and RTC Timer with Arduino Technical Answers to Real-World Problems Know the plant, Grow the plan

NelakurthiSudheer 3 Jan 03, 2022
MPY tool - manage files on devices running MicroPython

mpytool MPY tool - manage files on devices running MicroPython It is an alternative to ampy Target of this project is to make more clean code, faster,

Pavel Revak 5 Aug 17, 2022
How to configure IOMMU device for nested Proxmox hypervisor (PVE) VM - PCIe Passthrough

Configuring PCIe Passthrough for Nested Virtualization on Proxmox Summary: If you are running bare-metal L0 (level 0) Proxmox (PVE) hypervisor with ne

Travis Johnson 6 Aug 30, 2022
Using a GNSS module (Beidou + GPS) and the mapquest static map API

Using a GNSS module (Beidou + GPS) and the mapquest static map API

Kongduino 1 Nov 04, 2021
Control the lights of Alienware computers under GNU/Linux systems.

Before requesting support please consider that this software is not actively developed. I created it in 2014 for managing my Alienware M14X-R1 (where

rsm 111 Dec 05, 2022