2021 Real Robot Challenge Phase2 attemp

Overview

Real_Robot_Challenge_Phase2_AE_attemp

We(team name:thriftysnipe) are the first place winner of Phase1 in 2021 Real Robot Challenge.
Please see this page for more details: https://real-robot-challenge.com/leaderboard
To see more details about out Phase1 works: https://github.com/wq13552463699/Real_Robot_challenge
We were granted the access to Phase 2.

I am sorry, the project is too complex with too much large files, It is too hard to upload them all on Github. I just attached a part of the core code here for you to take a quick lreview. If you think my attempts is approriate, you can go to this Google Drive to download the full project file(all codes, results, trained models, environmental files,.etc):
https://drive.google.com/file/d/14vjCrWU6vzMdXxVSR2FeskMvuQpgqWqM/view?usp=sharing

RRC phase2 task description:

Randomly place 25 dices with the size of 0.01x0.01x0.01m in the environment. Use own controller to drive the three-finger robot to rearrange the dice to a specific pattern. Unfortunately, due to the set task is too difficult, no team could complete the task on the actual robot, so all teams with record are awarded third place in this phase. But I think our attempt has a reference value, if later scholars conduct related research, our method may be useful.

Our considerations:

We consider using a reinforcement learning algorithm as the controller in this phase. However, in this phase, information that can play as observations, such as coordinates and orientation of the dices, cannot be obtained from the environment directly but they are crucial for RL to run.
The alternative observations we can use are the images of the three cameras set in 3 different angles in the environment and their segmentation masks. We picked segmentation masks rather than the raw images since the attendance of noise and redundancy in the raw images were too much. Please see the following segmentation mask example(RGB's 3 channels represent segmentation masks from 3 different angles).

The segmentation masks have the dimension of 270x270x3, if directly passing it to the RL agent, which would lead to computational explosion and hard to converge. Hence, we planned to use some means to extract the principal components that can play as observations from it. In addition, the observation value also includes readable read-robot data(joint angle of the robot arm, end effector position, end effector speed, etc.).

Segmentation mask dimensionality reduction

This is the most important part of this task. We tried different methods, such as GAN, VAE, AE, to extract the principal conponents from the images. The quality of data dimensionality reduction can be easily seem from the discripency of reconstructed and oringinal images or the loss curves. After many trials(adjusting hyperparameters, network structure, depth, etc.), we got different trained VAE, GAN and AE models. We conducted offline tests on the obtained model and compared the results, we were surprised to find that the AE performed the best. When the latent of AE is 384, the quality of the reconstructed image is the best. The result is shown in the figure below.

The loss function also converges to an acceptable range:

Build up observation and trian RL agent.

We use the best AE encoder to deal with the segmentation masks to generate the observation and stitch with the readable data. The structure of the overall obervation is shown as follow:
We fed the above observations to several current cutting-edge model based and model free reinforcement learning algorithms, including DDPG+HER, PPO, SLAC, PlaNet and Dreamer. We thought it would work and enable the agent to learn for somewhat anyway. But it is a pity that after many attempts, the model still didn't have any trend to converge. Due to time limited, our attempts were over here.

Some reasons might lead to fail

  1. We used AE as the observation model. Although the AE's dimensionality reduction capability were the best, the latent space of AE were disordered and didn't make sense to RL agent. The observations passed to the RL must be fixed and orderly. Continuous delivery of unfixed data caused a dimensional disaster. For example, the third number in the observation vector passed at t1 represents 'infos of the 1st dice', and the number on the same position at t2 represents the 'infos of the 3rd dice'. This disorderly change with time makes RL very confused.
  2. The extracted latent space from segmentation mask dominates the observations, making RL ignore the existence of robots. The latent space size is 384, but which for the robot data is 27. The two are far apart, and there is a big data bias.
  3. Robot arm blocked the dices, segmentation masks can only represent a part of the dice. This problem cannot be avoided and can only be solved by more powerful image processing technology. This is also a major challenge in the current Image-based RL industry

Contribution

Pull requests are welcome. For major changes, please open an issue first to discuss what you would like to change. Please make sure to update tests as appropriate.

Owner
Qiang Wang
PhD at UCD. Research interest: Reinforcement Learning; Computer vision&Touch; Representation learning
Qiang Wang
Modi2-firmware-updater - MODI+ Firmware Updater With Python

MODI+ Firmware Updater 실행 준비 python3(파이썬3.9 혹은 그 이상의 버전)를 컴퓨터에 설치 python3 -m pip

LUXROBO 1 Feb 04, 2022
The goal of this project is for anyone with an old printer to be able to double-sided printing.

Welcome to PDF-double-side! Hi! I'm 15. I have a old printer so I can't print double-sided outs. The goal of this project is for anyone with an old pr

DejaVu 4 Dec 28, 2021
A Macropad using the Raspberry Pi Pico, programmed with CircuitPython.

A Macropad using the Raspberry Pi Pico, programmed with CircuitPython.

15 Oct 14, 2022
Testing additional addon devices, and their working scripts

ESP32-addon-devices-potpurri Testing additional addon devices, and their micropython working scripts 📑 List of device addons tested so far Ethernet P

f-caro 0 Nov 26, 2022
SPI driven CircuitPython driver for PCA9745B constant current LED driver.

Introduction THIS IS VERY MUCH ALPHA AND IN ACTIVE DEVELOPMENT. THINGS WILL BREAK! THIS MAY ALSO BREAK YOUR THINGS! SPI driven CircuitPython driver fo

Andrew Ferguson 1 Jan 14, 2022
A custom mechanical keyboard inspired by the CFTKB Mysterium

Env-KB A custom mechanical keyboard inspired by the CFTKB Mysterium Build Guide and Parts List What is to do? Right now for the first 5 PCBs I have, i

EnviousData 203 Jan 04, 2023
This application works with serial communication. Use a simple gui to send and receive serial data from arduino and control leds and motor direction

This application works with serial communication. Use a simple gui to send and receive serial data from arduino and control leds and motor direction

ThyagoKZKR 2 Jul 18, 2022
A Fear and Greed index visualiser for Bitcoin on a SSD1351 OLED Screen

We're Doomed - A Bitcoin Fear and Greed index OLED visualiser Doom is a first-person-shooter from the 1990s. The health status monitor was one of the

VEEB 19 Dec 29, 2022
An arduino/ESP project that can play back G-Force data previously recorded

An arduino/ESP project that can play back G-Force data previously recorded

7 Apr 12, 2022
Automatically draw a KiCad schematic for a circuit prototyped on a breadboard.

Schematic-o-matic Schematic-o-matic automatically draws a KiCad schematic for a circuit prototyped on a breadboard. How It Works The first step in the

Nick Bild 22 Oct 11, 2022
Pure micropython ESP32 SPI driver for sdcard and screen at the same SPI bus

micropython-esp32-spi-sdcard-and-screen-driver Proof of concept of Pure micropython espidf SPI driver for sdcard with screen at the same SPI bus (exam

Thomas Favennec 7 Mar 14, 2022
Event-based hardware simulation framework

An event-based multi-device simulation framework providing configuration and orchestration of complex multi-device simulations.

Diamond Light Source Controls Group 3 Feb 01, 2022
This is a collection of python modules that interact with the Ryze Tello drone.

This is a collection of python modules that interact with the Ryze Tello drone.

DJI-SDK 1.2k Jan 03, 2023
Iec62056-21-mqtt - Publish DSMR P1 telegrams acquired over IEC62056-21 to MQTT

IEC 62056-21 Publish DSMR P1 telegrams acquired over IEC62056-21 to MQTT. -21 is

Marijn Suijten 1 Jun 05, 2022
A modular sequencer based on Pi Pico & EuroPi

PicoSequencer A modular sequencer based on Pi Pico & EuroPi by Zeno Van Moerkerke / Keurslager Kurt For now it is 'only' a trigger sequencer, but I si

5 Oct 27, 2022
🐱 Petkit feeder components for HomeAssistant

Petkit for HomeAssistant Installing Download and copy custom_components/xiaomi_miot folder to custom_components folder in your HomeAssistant config fo

62 Dec 29, 2022
A Python program that makes it easy to manage modules on a CircuitPython device!

CircuitPython-Bundle-Manager-v2 A Python program that makes it easy to manage modules on a CircuitPython device! The CircuitPython Bundle Manager v2 i

Ckyiu 1 Dec 18, 2021
Micropython-wifimanager-esp8266 - Simple Wifi Manager for ESP8266 using MicroPython

micropython-wifimanager-esp8266 Simple Wifi Manager for ESP8266 using MicroPytho

Abhinuv Nitin Pitale 1 Jan 04, 2022
Automate gate/garage door opening via 433.92MHz emitter with Raspberry Pi, Home Assistant and Homekit.

Automate opening your garage door / gate Summary This project sums up how I automated opening my garage door using a Raspberry PI, a 433Mhz emitter, H

Julien Fouilhé 29 Nov 30, 2022
Component for deep integration LedFx from Home Assistant.

LedFX for Home Assistant Component for deep integration LedFx from Home Assistant. Table of Contents FAQ Install Config Performance FAQ Q. What versio

Dmitry Mamontov 28 Dec 13, 2022