A dot matrix rendered using braille characters.

Overview

⣿ dotmatrix

A dot matrix rendered using braille characters.

PyPI PyPI - Python Version PyPI - License Checked with mypy Code style: black

Description

This library provides class called Matrix which represents a dot matrix that can be rendered to a string of Braille characters. In addition the class also provides some usefull functions for drawing all kinds of things onto said matrix.

A word on fonts...

This heavily relies on the font you want display the resulting characters with. Some "monospace" fonts/systems dot not treat all characters as having the same width! In particular this affects the blank braille character (this: ). The system that causes the most problems seems to be Windows while both mac OS and your average linux distribution don't screw it up. If you are having problems with the images in this readme you can have a look at the images included in the spoilers.

Install

Use can install this library from PyPI:

pip install dotmatrix

Example

Code

from dotmatrix import Matrix

m = Matrix(64, 64)

m.rectangle((0, 0), (63, 63))
m.circle((31, 31), 31)

print(m.render())

Output

⡏⠉⠉⠉⠉⠉⠉⠉⢉⡩⠭⠛⠛⠉⠉⠉⠉⠉⠙⠛⠫⠭⣉⠉⠉⠉⠉⠉⠉⠉⠉⢹
⡇⠀⠀⠀⠀⢀⡠⠊⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠉⠢⣀⠀⠀⠀⠀⠀⢸
⡇⠀⠀⢀⠔⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠑⢄⠀⠀⠀⢸
⡇⠀⡠⠊⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠈⠢⡀⠀⢸
⡇⡰⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠱⡀⢸
⣧⠃⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢣⢸
⡟⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠘⣼
⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣿
⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣿
⣷⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢰⢹
⡏⡆⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡎⢸
⡇⠘⡄⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡜⠀⢸
⡇⠀⠈⢢⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢠⠊⠀⠀⢸
⡇⠀⠀⠀⠑⢄⡀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣀⠔⠁⠀⠀⠀⢸
⡇⠀⠀⠀⠀⠀⠈⠢⢄⡀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣀⠤⠊⠀⠀⠀⠀⠀⠀⢸
⣇⣀⣀⣀⣀⣀⣀⣀⣀⣈⣉⣒⣒⣤⣤⣤⣤⣤⣔⣒⣊⣉⣀⣀⣀⣀⣀⣀⣀⣀⣀⣸
image

This is what it should look like:

Drawing functions

As of now this library contains the following drawing functions:

  • scatter – Draws some points.
  • iscatter – Draws some points (from an iterator).
  • show – Draws an object implementing the Dotted protocol.
  • line – Draws a line.
  • chain – Draws a chain of segments.
  • polygon – Draws a polygon.
  • rectangle – Draws an axis aligned rectangle. (from two opposing corners)
  • cricle – Draws a circle.
  • ellipse – Draws an axis aligned ellipse.
  • curve – Draws a Bézier curve.
  • plot – Plots a series of XY-coordinates. (matplotlib.pyplot style)
  • plotf – Plots a function.
Dotted protocol
class Dotted(Protocol):
    """An object that can be drawn on a Matrix."""

    def __dots__(self) -> Iterable[Point]:
        """Generate the pixel positions representing this object.

        :return: pixels to draw
        :rtype: Iterable[Point]
        """

⚠️   The origin of the coordinate system, i.e. (0, 0), is at the top left corner!

Does it need to be Braille characters?

No, no it does not. It's just the default; you are free to choose how you want to render things. To facilitate this any given Matrix object internally makes use of an object implementing the Display protocol. For example this library implements, next to the Braille displays, some more display like Block or Unit.

Display protocol
class Display(Protocol[V, O]):
    """An object that can be used as a matrix display."""

    width: int
    height: int
    default_brush: V

    def __init__(
        self, width: int, height: int, *, default_brush: Union[V, UseDefault]
    ) -> None:
        """Initialize a matrix object.

        :param width: width of the matrix
        :type width: int
        :param height: height of the matrix
        :type height: int
        """

    def render(self) -> O:
        """Render the current matrix state.

        :return: render result
        :rtype: O
        """

    def __getitem__(self, pos: Point) -> V:
        """Get the value of a pixel.

        :param pos: position of pixel to get
        :type pos: Point
        :raises IndexError: requested pixel is out of the bounds of the matrix
        :return: state of the pixel
        :rtype: bool
        """

    def __setitem__(self, pos: Point, val: V):
        """Set the value of a pixel.

        :param pos: position of the pixel to set
        :type pos: Point
        :param val: the value to set the pixel to
        :type val: bool
        :raises IndexError: requested pixel is out of the bounds of the matrix
        """

Block display

Code

from dotmatrix import Matrix
from dotmatrix.displays import Block

# Using a different display is as simple as passing it
# into the display-argument of the initializer.
m = Matrix(16, 16, display=Block)

m.rectangle((0, 0), (15, 15))
m.circle((7, 7), 7)

print(m.render())

Output

█▀▀██▀▀▀▀▀██▀▀▀█
█▄▀         ▀▄ █
█▀           ▀▄█
█             ██
█             ██
██           █ █
█ ▀▄▄     ▄▄▀  █
█▄▄▄▄█████▄▄▄▄▄█

Unit display

Code

from dotmatrix import Matrix
from dotmatrix.displays import Block

# The following isn't required for using the Unit display.
# It's just here to demonstrate that you "pre-instantiate"
# a display and construct a Matrix object from it using
# Matrix.from_display.
d = Unit(16, 16, chars=["  ", "##"])
m = Matrix.from_display(d)

m.curve((0, 0), (15, 0), (0, 15), (15, 15))

print(m.render())

Output

########
        ####
            ##
              ##
              ##
              ##
              ##
              ##
                ##
                ##
                ##
                ##
                ##
                  ##
                    ##
                      ##########

More examples

Bézier flower

Code

from dotmatrix import Matrix

m = Matrix(64, 64)

m.curve((0, 0), (63, 0), (0, 63), (63, 63))
m.curve((0, 0), (0, 63), (63, 0), (63, 63))
m.curve((63, 0), (0, 0), (63, 63), (0, 63))
m.curve((63, 0), (63, 63), (0, 0), (0, 63))

print(m.render())

Output

⡏⠉⠉⠉⠉⠒⠒⠤⠤⣀⡀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢀⣀⠤⠤⠒⠒⠉⠉⠉⠉⢹
⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠈⠒⢄⠀⠀⠀⠀⠀⠀⡠⠒⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⢸
⢣⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠑⡄⠀⠀⢠⠊⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡜
⠘⡄⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠈⡆⢰⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢠⠃
⠀⢣⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢱⡎⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡜⠀
⠀⠈⢢⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢸⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡔⠁⠀
⠀⠀⠀⠑⢄⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢸⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡠⠊⠀⠀⠀
⠀⠀⠀⠀⠀⠉⠢⠤⢄⣀⣀⣀⣀⣀⣀⣸⣇⣀⣀⣀⣀⣀⣀⡠⠤⠔⠉⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⣀⠤⠒⠒⠉⠉⠉⠉⠉⠉⢹⡏⠉⠉⠉⠉⠉⠉⠒⠒⠤⣀⠀⠀⠀⠀⠀
⠀⠀⠀⡠⠊⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢸⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠑⢄⠀⠀⠀
⠀⢀⠎⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢸⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠱⡀⠀
⠀⡜⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡜⢣⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢣⠀
⢰⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢠⠃⠘⡄⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠈⡆
⡜⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡠⠃⠀⠀⠘⢄⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢣
⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⢀⡠⠊⠀⠀⠀⠀⠀⠀⠑⢄⡀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢸
⣇⣀⣀⣀⣀⠤⠤⠔⠒⠉⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠈⠉⠒⠢⠤⠤⣀⣀⣀⣀⣸
image

This is what it should look like:


Function plotting

Code

from dotmatrix import Matrix

m = Matrix(64, 64)

m.rectangle((0, 0), (63, 63))
m.plotf(
    lambda x: 0.005 * x ** 3,
    range(-31, 31),
    origin=(31,31),
)

print(m.render())

Output

⡏⠉⠉⠉⠉⠉⢹⠉⠉⠉⠉⠉⠉⠉⠉⠉⠉⠉⠉⠉⠉⠉⠉⠉⠉⠉⠉⠉⠉⠉⠉⢹
⡇⠀⠀⠀⠀⠀⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢸
⡇⠀⠀⠀⠀⠀⠀⢱⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢸
⡇⠀⠀⠀⠀⠀⠀⠈⡆⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢸
⡇⠀⠀⠀⠀⠀⠀⠀⠸⡀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢸
⡇⠀⠀⠀⠀⠀⠀⠀⠀⠱⡀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢸
⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠱⡀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢸
⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠈⠢⢄⣀⣀⣀⣀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢸
⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠉⠢⡀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢸
⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠈⢆⠀⠀⠀⠀⠀⠀⠀⠀⠀⢸
⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠈⡆⠀⠀⠀⠀⠀⠀⠀⠀⢸
⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠸⡀⠀⠀⠀⠀⠀⠀⠀⢸
⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢣⠀⠀⠀⠀⠀⠀⠀⢸
⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠘⡄⠀⠀⠀⠀⠀⠀⢸
⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢣⠀⠀⠀⠀⠀⠀⢸
⣇⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣸⣀⣀⣀⣀⣀⣀⣸
image

This is what it should look like:


Development

In case you want to add some code to this project your need to first make sure you have poetry installed. Afterwards you can run the following commands to get your setup up and running:

poetry install
poetry shell
pre-commit install

Due note that you will have to commit from inside the virtual environment or you need to have the dev-tools installed in your local python installation.

All PRs will be style checked with isort, pydocstyle and black as well as type checked with mypy. In addition to this all PRs should target the dev-branch and contain as many signed commits as possible (better yet only signed commits 😉 ). If you have no clue how or why to sign your commits have a look at the GitHub docs on this topic.

Comments
  • Bug: Bad images in README

    Bug: Bad images in README

    Description

    As you mentioned in reddit post, pictures of matrix can be broken due to browsers "smart" behaviour. This problem is on README too

    Code

    Not the code, only ask for use picture in README
    

    Output

    Will add picture in "Anything else?" section as I am not certain in posting picture here
    

    Anything else?

    Example: image

    bug 
    opened by Masynchin 2
  • Feature Request: Different

    Feature Request: Different "Character sets"

    Description

    One "nice to have" feature could be the addition of matrices that use other character sets for rendering. One nice set could be ▖▗▘▝▀▄▌▐▚▞▙▛▜▟█, i.e. a 2x2 grid per character.

    This could be accomplished by extracting all the character set dependent code into a subclass and leave an ABC that makes use of __getitem__, __setitem__, __init__, and render provided by the subclass.

    Code

    from dotmatrix import BlockMatrix
    
    m = BlockMatrix(16, 8)
    
    m.rectangle((0, 0), (15, 7))
    
    print(m.render())
    

    Output

    ▛▀▀▀▀▀▀▜
    ▌      ▐
    ▌      ▐
    ▌      ▐
    ▌      ▐
    ▌      ▐
    ▌      ▐
    ▙▄▄▄▄▄▄▟
    

    Anything else?

    No response

    enhancement 
    opened by timfi 1
  • Feature: Display Abstraction

    Feature: Display Abstraction

    Closes #2

    What's the idea?

    One "nice to have" feature could be the addition of matrices that use other character sets for rendering. One nice set could be ▖▗▘▝▀▄▌▐▚▞▙▛▜▟█, i.e. a 2x2 grid per character.

    Code

    from dotmatrix import BlockMatrix
    
    m = BlockMatrix(16, 8)
    
    m.rectangle((0, 0), (15, 7))
    
    print(m.render())
    

    Output

    ▛▀▀▀▀▀▀▜
    ▌      ▐
    ▌      ▐
    ▌      ▐
    ▌      ▐
    ▌      ▐
    ▌      ▐
    ▙▄▄▄▄▄▄▟
    

    from issue


    How did I accomplish this?

    To implement this I added the Display protocol/abstraction which describes all methods required for setting/getting pixel values and rendering said values to some useful output. The Braille logic has been moved to such a display (at dotmatrix.displays.Braille and remains the default display type. In addition to this I've also implemented a unicode block character display at dotmatrix.displays.Block.

    Code

    from dotmatrix import Matrix
    from dotmatrix.displays import Block
    
    m = Matrix(16, 16, display=Block)
    
    m.rectangle((0, 0), (15, 15))
    m.circle((7, 7), 7)
    
    print(m.render())
    

    Output

    █▀▀██▀▀▀▀▀██▀▀▀█
    █▄▀         ▀▄ █
    █▀           ▀▄█
    █             ██
    █             ██
    ██           █ █
    █ ▀▄▄     ▄▄▀  █
    █▄▄▄▄█████▄▄▄▄▄█
    
    opened by timfi 0
  • Feature: Display Abstraction and new Display-type

    Feature: Display Abstraction and new Display-type

    Closes #2

    What's the idea?

    One "nice to have" feature could be the addition of matrices that use other character sets for rendering. One nice set could be ▖▗▘▝▀▄▌▐▚▞▙▛▜▟█, i.e. a 2x2 grid per character.

    Code

    from dotmatrix import BlockMatrix
    
    m = BlockMatrix(16, 8)
    
    m.rectangle((0, 0), (15, 7))
    
    print(m.render())
    

    Output

    ▛▀▀▀▀▀▀▜
    ▌      ▐
    ▌      ▐
    ▌      ▐
    ▌      ▐
    ▌      ▐
    ▌      ▐
    ▙▄▄▄▄▄▄▟
    

    from issue


    How did I accomplish this?

    To implement this I added the Display protocol/abstraction which describes all methods required for setting/getting pixel values and rendering said values to some useful output. The Braille logic has been moved to such a display (at dotmatrix.displays.Braille and remains the default display type. In addition to this I've also implemented a unicode block character display at dotmatrix.displays.Block.

    Code

    from dotmatrix import Matrix
    from dotmatrix.displays import Block
    
    m = Matrix(16, 16, display=Block)
    
    m.rectangle((0, 0), (15, 15))
    m.circle((7, 7), 7)
    
    print(m.render())
    

    Output

    █▀▀██▀▀▀▀▀██▀▀▀█
    █▄▀         ▀▄ █
    █▀           ▀▄█
    █             ██
    █             ██
    ██           █ █
    █ ▀▄▄     ▄▄▀  █
    █▄▄▄▄█████▄▄▄▄▄█
    
    enhancement 
    opened by timfi 0
  • Feature Request: Matrix manipulation

    Feature Request: Matrix manipulation

    Description

    It would be nice to be able to rotate/transpose/crop/shift/etc. any give matrix.

    Code

    from dotmatrix import Matrix
    
    m = Matrix(5, 5)
    
    print("Initial")
    m.polygon((0, 0), (0, 4), (4, 4))
    print(m.render())
    
    print("Transposed")
    m.transpose()
    print(m.render())
    

    Output

    Initial
    ⡗⢄⠀
    ⠉⠉⠁
    Transposed
    ⠙⢍⡇
    ⠀⠀⠁
    

    Anything else?

    No response

    enhancement 
    opened by timfi 0
  • Feature Request: Dithered Images

    Feature Request: Dithered Images

    Description

    An amazing feature would be the ability to render a given image onto a dotmatrix. And to make things prettier some sort of dithering, be it Floyd-Steinberg or Atkinson or something else entirely, would also be nice.

    Code

    import dotmatrix as dm
    
    m = dm.Matrix(256, 256)
    
    m.blit(
        "path/to/my/image",
        area=((63, 63), (191, 191)),  # The area to blit the image to.
        dither=dm.dither.Floyd        # The dithering algorithm to use.
    )
    
    print(m.render())
    

    or

    import dotmatrix as dm
    from PIL import Image
    
    
    m = dm.Matrix(256, 256)
    img = Image.open("path/to/my/image")
    
    m.blit(
        img,
        area=((63, 63), (191, 191)),  # The area to blit the image to.
        dither=dm.dither.Floyd        # The dithering algorithm to use.
    )
    
    print(m.render())
    

    Output

    No response

    Anything else?

    Example: DotArt by Garrett Albright

    The latter example usage would require pillow as dependency. Thus it might be sensible to block this feature behind an "import guard" and add pillow as an extra-install-option, àla dotmatrix[images].

    enhancement 
    opened by timfi 0
Releases(v0.2.0)
  • v0.2.0(Aug 22, 2021)

    • Adds Display protocol to describe the low level drawing interface.
    • Adds 3 implementations of the Display protocol
      • display.Braille: as the name implies, this is existing "display mode"
      • display.Block: renders using unicode block charaters
      • display.Unit: renders using two given charaters for each state (0 vs. 1)
    Source code(tar.gz)
    Source code(zip)
  • v0.1.1(Aug 16, 2021)

  • v0.1.0(Aug 16, 2021)

    Initial Alpha Release! 🥳

    Presenting a python library for drawing things using Braille characters.

    Note that this release has been janked from PyPI due to ambiguous license declarations!

    Source code(tar.gz)
    Source code(zip)
Minitel 5 somewhat reverse-engineered

Minitel 5 The Minitel was a french dumb terminal with an embedded modem which had its Golden Age before the rise of Internet. Typically cubic, with an

cLx 10 Dec 28, 2022
Discovering local read-level DNA methylation patterns and DNA methylation heterogeneity in intermediately methylated regions

Discovering local read-level DNA methylation patterns and DNA methylation heterogeneity in intermediately methylated regions

1 Jan 11, 2022
Datargsing is a data management and manipulation Python library

Datargsing What is It? Datargsing is a data management and manipulation Python library which is currently in deving Why this library is good? This Pyt

CHOSSY Lucas 10 Oct 24, 2022
Opendrop - An open Apple AirDrop implementation written in Python

OpenDrop: an Open Source AirDrop Implementation OpenDrop is a command-line tool that allows sharing files between devices directly over Wi-Fi. Its uni

Secure Mobile Networking Lab 7.5k Jan 03, 2023
A promo calculator for sports betting odds.

Sportbetter Calculation Toolkit Parlay Calculator This is a quick parlay calculator that considers some of the common promos offered. It is used to id

Luke Bhan 1 Sep 08, 2022
Simply create JIRA releases based on your github releases

Simply create JIRA releases based on your github releases

8 Jun 17, 2022
The Ultimate Widevine Content Ripper (KEY Extract + Download + Decrypt) is REBORN

NARROWVINE-REBORN ** UPDATE 21.12.01 ** As expected Google patched its ChromeCDM Whitebox exploit by Satsuoni with a force-update on the ChromeCDM. Th

Vank0n 104 Dec 07, 2022
Djangoblog - A blogging site where people can make their accout and write blogs and read other author's blogs

This a blogging site where people can make their accout and write blogs and read other author's blogs.

1 Jan 26, 2022
京东自动入会获取京豆

京东入会领京豆 要求 有一定的电脑知识 or 有耐心爱折腾 需要Chrome(推荐)、Edge(Chromium)、Firefox 操作系统需是Mac(本人没在m1上测试)、Linux(在deepin上测试过)、Windows 安装方法 脚本采用Selenium遍历京东入会有礼界面,由于遍历了200

Vanke Anton 500 Dec 22, 2022
An alternative site to emplea.do due to inconsistent service of the app.

feline a agile and fast alternative to emplea.do License: MIT Settings Moved to settings. Basic Commands Setting Up Your Users To create a normal user

Codetiger 8 Nov 10, 2021
Demo Python project using Conda and Poetry

Conda Poetry This is a demonstration of how Conda and Poetry can be used in a Python project for dev dependency management and production deployment.

Ryan Allen 2 Apr 26, 2022
Glyph Metadata Palette

This plugin for Glyphs3 allows you to associate arbitrary structured metadata to each glyph in your font.

Simon Cozens 4 Jan 26, 2022
A simple python script to convert Rubber Ducky payloads into AutoHotKey scripts

AHKDuckyReplacer A simple python script to convert Rubber Ducky payloads into AutoHotKey scripts. I have also added a sample payload for testing. I wi

Krizsan0596 5 Sep 28, 2022
This is a repository built by the community for the community.

Nutshell Machine Learning Machines can see, hear and learn. Welcome to the future 🌍 The repository was built with a tree-like structure in mind, it c

Edem Gold 82 Nov 18, 2022
Improve current data preprocessing for FTM's WOB data to analyze Shell and Dutch Governmental contacts.

We're the hackathon leftovers, but we are Too Good To Go ;-). A repo by Lukas Schubotz and Raymon van Dinter. We aim to improve current data preprocessing for FTM's WOB data to analyze Shell and Dutc

ASReview hackathon for Follow the Money 5 Dec 09, 2021
Class XII computer science project.

Computer Science Project — Class XII Kshitij Srivastava (XI – A) Introduction The aim of this project is to create a fully operational system for a me

Kshitij Srivastava 2 Jul 21, 2022
Um sistema de llogin feito em uma interface grafica.

Interface-para-login Um sistema de login feito com JSON. Utilizando a biblioteca Tkinter, eu criei um sistema de login, onde guarda a informações de l

Mobben 1 Nov 28, 2021
Quanser Labs Robotic Arm With Python

Quanser-Labs-Robotic-Arm As a team, we programmed a Robotic-Arm in Python on the

1 Jul 11, 2022
Slientruss3d : Python for stable truss analysis tool

slientruss3d : Python for stable truss analysis tool Desciption slientruss3d is a python package which can solve the resistances, internal forces and

3 Dec 26, 2022
Random Turkish name generator with realistic probabilities.

trnames Random Turkish name generator with realistic probabilities. Based on Trey Hunner's names package. Installation The package can be installed us

Kaan Öztürk 20 Jan 02, 2023