Paper and Code for "Curriculum Learning by Optimizing Learning Dynamics" (AISTATS 2021)

Related tags

DocumentationDoCL
Overview

Curriculum Learning by Optimizing Learning Dynamics (DoCL)

AISTATS 2021 paper:

Title: Curriculum Learning by Optimizing Learning Dynamics [pdf] [appendix] [slides]
Authors: Tianyi Zhou, Shengjie Wang, Jeff A. Bilmes
Institute: University of Washington, Seattle

@inproceedings{
    zhou2020docl,
    title={Curriculum Learning by Optimizing Learning Dynamics},
    author={Tianyi Zhou and Shengjie Wang and Jeff A. Bilmes},
    booktitle={Proceedings of The 24th International Conference on Artificial Intelligence and Statistics (AISTATS)},
    year={2021},
}

Abstract
We study a novel curriculum learning scheme where in each round, samples are selected to achieve the greatest progress and fastest learning speed towards the ground-truth on all available samples. Inspired by an analysis of optimization dynamics under gradient flow for both regression and classification, the problem reduces to selecting training samples by a score computed from samples’ residual and linear temporal dynamics. It encourages the model to focus on the samples at learning frontier, i.e., those with large loss but fast learning speed. The scores in discrete time can be estimated via already-available byproducts of training, and thus require a negligible amount of extra computation. We discuss the properties and potential advantages of the proposed dynamics optimization via current deep learning theory and empirical study. By integrating it with cyclical training of neural networks, we introduce "dynamics-optimized curriculum learning (DoCL)", which selects the training set for each step by weighted sampling based on the scores. On nine different datasets, DoCL significantly outperforms random mini-batch SGD and recent curriculum learning methods both in terms of efficiency and final performance.

Usage

Prerequisites

Instructions

  • For now, we keep all the DoCL code in docl.py. It supports multiple datasets and models. You can add your own options.
  • Example scripts to run DoCL on CIFAR10/100 for training WideResNet-28-10 can be found in docl_cifar.sh.
  • We apply multiple episodes of training epochs, each following a cosine annealing learning rate decreasing from --lr_max to --lr_min. The episodes can be set by epoch numbers, for example, --epochs 300 --schedule 0 5 10 15 20 30 40 60 90 140 210 300.
  • DoCL reduces the selected subset's size over the training episodes, starting from n (the total number of training samples). Set how to reduce the size by --k 1.0 --dk 0.1 --mk 0.3 for example, which starts from a subset size (k * n) and multiplies it by (1 - dk) until reaching (mk * n).
  • To further reduce the subset in earlier epochs less than n and save more computation, add --use_centrality to further prune the DoCL-selected subset to a few diverse and representative samples according to samples' centrality (defined on pairwise similarity between samples). Set the corresponding selection ratio and how you want to change the ratio every episode, for example, --select_ratio 0.5 --select_ratio_rate 1.1 will further reduce the DoCL-selected subset to be its half size in the first non-warm-starting episode and then multiply this ratio by 1.1 for every future episode until selection_ratio = 1.
  • Centrality is an alternative of the facility location function in the paper in order to encourage diversity. The latter requires an external submodular maximization library and extra computation, compared to the centrality used here. We may add the option of submodular maximization in the future, but the centrality performs good enough on most tested tasks.
  • Self-supervised learning may help in some scenarios. Two types of self-supervision regularizations are supported, i.e., --consistency and --contrastive.
  • If one is interested to try DoCL on noisy-label learning (though not the focus of the paper), add --use_noisylabel and specify the noisy type and ratio using --label_noise_type and --label_noise_rate.

License
This project is licensed under the terms of the MIT license.

Owner
Tianyi Zhou
Tianyi Zhou
Data science Python notebooks: Deep learning (TensorFlow, Theano, Caffe, Keras), scikit-learn, Kaggle, big data (Spark, Hadoop MapReduce, HDFS), matplotlib, pandas, NumPy, SciPy, Python essentials, AWS, and various command lines.

Data science Python notebooks: Deep learning (TensorFlow, Theano, Caffe, Keras), scikit-learn, Kaggle, big data (Spark, Hadoop MapReduce, HDFS), matplotlib, pandas, NumPy, SciPy, Python essentials, A

Donne Martin 24.5k Jan 09, 2023
Sphinx Theme Builder

Sphinx Theme Builder Streamline the Sphinx theme development workflow, by building upon existing standardised tools. and provide a: simplified packagi

Pradyun Gedam 23 Dec 26, 2022
Essential Document Generator

Essential Document Generator Dead Simple Document Generation Whether it's testing database performance or a new web interface, we've all needed a dead

Shane C Mason 59 Nov 11, 2022
A Material Design theme for MkDocs

A Material Design theme for MkDocs Create a branded static site from a set of Markdown files to host the documentation of your Open Source or commerci

Martin Donath 12.3k Jan 04, 2023
Types that make coding in Python quick and safe.

Type[T] Types that make coding in Python quick and safe. Type[T] works best with Python 3.6 or later. Prior to 3.6, object types must use comment type

Contains 17 Aug 01, 2022
đź’»An open-source eBook with 101 Linux commands that everyone should know

This is an open-source eBook with 101 Linux commands that everyone should know. No matter if you are a DevOps/SysOps engineer, developer, or just a Linux enthusiast, you will most likely have to use

Ashfaque Ahmed 0 Oct 29, 2022
PySpark Cheat Sheet - learn PySpark and develop apps faster

This cheat sheet will help you learn PySpark and write PySpark apps faster. Everything in here is fully functional PySpark code you can run or adapt to your programs.

Carter Shanklin 168 Jan 01, 2023
Automatically open a pull request for repositories that have no CONTRIBUTING.md file

automatic-contrib-prs Automatically open a pull request for repositories that have no CONTRIBUTING.md file for a targeted set of repositories. What th

GitHub 8 Oct 20, 2022
A simple tutorial to get you started with Discord and it's Python API

Hello there Feel free to fork and star, open issues if there are typos or you have a doubt. I decided to make this post because as a newbie I never fo

Sachit 1 Nov 01, 2021
Quickly download, clean up, and install public datasets into a database management system

Finding data is one thing. Getting it ready for analysis is another. Acquiring, cleaning, standardizing and importing publicly available data is time

Weecology 274 Jan 04, 2023
Searches a document for hash tags. Support multiple natural languages. Works in various contexts.

ht-getter Searches a document for hash tags. Supports multiple natural languages. Works in various contexts. This package uses a non-regex approach an

Rairye 1 Mar 01, 2022
:blue_book: Automatic documentation from sources, for MkDocs.

mkdocstrings Automatic documentation from sources, for MkDocs. Features - Python handler - Requirements - Installation - Quick usage Features Language

1.1k Jan 04, 2023
Netbox Dns is a netbox plugin for managing zone, nameserver and record inventory.

Netbox DNS Netbox Dns is a netbox plugin for managing zone, nameserver and record inventory. Features Manage zones (domains) you have. Manage nameserv

Aurora Research Lab 155 Jan 06, 2023
An ongoing curated list of OS X best applications, libraries, frameworks and tools to help developers set up their macOS Laptop.

macOS Development Setup Welcome to MacOS Local Development & Setup. An ongoing curated list of OS X best applications, libraries, frameworks and tools

Paul Veillard 3 Apr 03, 2022
A python package to import files from an adjacent folder

EasyImports About EasyImports is a python package that allows users to easily access and import files from sister folders: f.ex: - Project - Folde

1 Jun 22, 2022
DataAnalysis: Some data analysis projects in charles_pikachu

DataAnalysis DataAnalysis: Some data analysis projects in charles_pikachu You can star this repository to keep track of the project if it's helpful fo

9 Nov 04, 2022
Elliptic curve cryptography (ed25519) beginner tutorials in Python 3

ed25519_tutorials Elliptic curve cryptography (ed25519) beginner tutorials in Python 3 Instructions Just download the repo and read the tutorial files

6 Dec 27, 2022
A simple malware that tries to explain the logic of computer viruses with Python.

Simple-Virus-With-Python A simple malware that tries to explain the logic of computer viruses with Python. What Is The Virus ? Computer viruses are ma

Xrypt0 6 Nov 18, 2022
Automatic links from code examples to reference documentation

sphinx-codeautolink Automatic links from Python code examples to reference documentation at the flick of a switch! sphinx-codeautolink analyses the co

Felix Hildén 41 Dec 17, 2022
Automated Integration Testing and Live Documentation for your API

Automated Integration Testing and Live Documentation for your API

ScanAPI 1.3k Dec 30, 2022