Practical Python Programming

Overview

Welcome!

When I first learned Python nearly 25 years ago, I was immediately struck by how I could productively apply it to all sorts of messy work projects. Fast-forward a decade and I found myself teaching others the same fun. The result of that teaching is this course--A no-nonsense treatment of Python that has been actively taught to more than 400 in-person groups since 2007. Traders, systems admins, astronomers, tinkerers, and even a few hundred rocket scientists who used Python to help land a rover on Mars--they've all taken this course. Now, I'm pleased to make it available under a Creative Commons license. Enjoy!

GitHub Pages | GitHub Repo.

--David Beazley (https://dabeaz.com), @dabeaz

What is This?

The material you see here is the heart of an instructor-led Python training course used for corporate training and professional development. It has been in continual development since 2007 and battle tested in real-world classrooms. Usually, it's taught in-person over the span of three or four days--requiring approximately 25-35 hours of intense work. This includes the completion of approximately 130 hands-on coding exercises.

Target Audience

Students of this course are usually professional scientists, engineers, and programmers who already have experience in at least one other programming language. No prior knowledge of Python is required, but knowledge of common programming topics is assumed. Most participants find the course challenging--even if they've already been doing a bit of Python programming.

Course Objectives

The goal of this course is to cover foundational aspects of Python programming with an emphasis on script writing, data manipulation, and program organization. By the end of this course, students should be able to start writing useful Python programs on their own or be able to understand and modify Python code written by their coworkers.

Requirements

To complete this course, you need nothing more than a basic installation of Python 3.6 or newer and time to work on it.

What This Course is Not

This is not a course for absolute beginners on how to program a computer. It is assumed that you already have programming experience in some other programming language or Python itself.

This is not a course on web development. That's a different circus. However, if you stick around for this circus, you'll still see some interesting acts--just nothing involving animals.

This is not a course for software engineers on how to write or maintain a one-million line Python application. I don't write programs like that, nor do most companies who use Python, and neither should you. Delete something already!

Take me to the Course Already!

Ok, ok. Point your browser HERE!

Community Discussion

Want to discuss the course? You can join the conversation on Gitter. I can't promise an individual response, but perhaps others can jump in to help.

Acknowledgements

Llorenç Muntaner was instrumental in converting the course content from Apple Keynote to the online structure that you see here.

Various instructors have presented this course at one time or another over the last 12 years. This includes (in alphabetical order): Ned Batchelder, Juan Pablo Claude, Mark Fenner, Michael Foord, Matt Harrison, Raymond Hettinger, Daniel Klein, Travis Oliphant, James Powell, Michael Selik, Hugo Shi, Ian Stokes-Rees, Yarko Tymciurak, Bryan Van de ven, Peter Wang, and Mark Wiebe.

I'd also like to thank the thousands of students who have taken this course and contributed to its success with their feedback and discussion.

Questions and Answers

Q: Are there course videos I can watch?

No. This course is about you writing Python code, not watching someone else.

Q: How is this course licensed?

Practical Python Programming is licensed under a Creative Commons Attribution ShareAlike 4.0 International License.

Q: May I use this material to teach my own Python course?

Yes, as long as appropriate attribution is given.

Q: May I make derivative works?

Yes, as long as such works carry the same license terms and provide attribution.

Q: Can I translate this to another language?

Yes, that would be awesome. Send me a link when you're done.

Q: Can I live-stream the course or make a video?

Yes, go for it! You'll probably learn a lot of Python doing that.

Q: Why wasn't topic X covered?

There is only so much material that you can cover in 3-4 days. If it wasn't covered, it was probably because it was once covered and it caused everyone's head to explode or there was never enough time to cover it in the first place. Also, this is a course, not a Python reference manual.

Q: Do you accept pull requests?

Bug reports are appreciated and may be filed through the issue tracker. Pull requests are not accepted except by invitation. Please file an issue first.

the project for the most brutal and effective language learning technique

- "The project for the most brutal and effective language learning technique" (c) Alex Kay The langflow project was created especially for language le

Alexander Kaigorodov 7 Dec 26, 2021
A system for Python that generates static type annotations by collecting runtime types

MonkeyType MonkeyType collects runtime types of function arguments and return values, and can automatically generate stub files or even add draft type

Instagram 4.1k Jan 07, 2023
Test utility for validating OpenAPI documentation

DRF OpenAPI Tester This is a test utility to validate DRF Test Responses against OpenAPI 2 and 3 schema. It has built-in support for: OpenAPI 2/3 yaml

snok 106 Jan 05, 2023
A swagger tool for tornado, using python to write api doc!

SwaggerDoc About A swagger tool for tornado, using python to write api doc! Installation pip install swagger-doc Quick Start code import tornado.ioloo

aaashuai 1 Jan 10, 2022
🐱‍🏍 A curated list of awesome things related to Hugo themes.

awesome-hugo-themes Automated deployment @ 2021-10-12 06:24:07 Asia/Shanghai &sorted=updated Theme Author License GitHub Stars Updated Blonde wamo MIT

13 Dec 12, 2022
The OpenAPI Specification Repository

The OpenAPI Specification The OpenAPI Specification is a community-driven open specification within the OpenAPI Initiative, a Linux Foundation Collabo

OpenAPI Initiative 25.5k Dec 29, 2022
A document format conversion service based on Pandoc.

reformed Document format conversion service based on Pandoc. Usage The API specification for the Reformed server is as follows: GET /api/v1/formats: L

David Lougheed 3 Jul 18, 2022
Tips for Writing a Research Paper using LaTeX

Tips for Writing a Research Paper using LaTeX

Guanying Chen 727 Dec 26, 2022
Reproducible Data Science at Scale!

Pachyderm: The Data Foundation for Machine Learning Pachyderm provides the data layer that allows machine learning teams to productionize and scale th

Pachyderm 5.7k Dec 29, 2022
Watch a Sphinx directory and rebuild the documentation when a change is detected. Also includes a livereload enabled web server.

sphinx-autobuild Rebuild Sphinx documentation on changes, with live-reload in the browser. Installation sphinx-autobuild is available on PyPI. It can

Executable Books 440 Jan 06, 2023
Python For Finance Cookbook - Code Repository

Python For Finance Cookbook - Code Repository

Packt 544 Dec 25, 2022
DataAnalysis: Some data analysis projects in charles_pikachu

DataAnalysis DataAnalysis: Some data analysis projects in charles_pikachu You can star this repository to keep track of the project if it's helpful fo

9 Nov 04, 2022
:blue_book: Automatic documentation from sources, for MkDocs.

mkdocstrings Automatic documentation from sources, for MkDocs. Features Python handler features Requirements Installation Quick usage Features Languag

Timothée Mazzucotelli 1.1k Dec 31, 2022
Python code for working with NFL play by play data.

nfl_data_py nfl_data_py is a Python library for interacting with NFL data sourced from nflfastR, nfldata, dynastyprocess, and Draft Scout. Includes im

82 Jan 05, 2023
Generates, filters, parses, and cleans data regarding the financial disclosures of judges in the American Judicial System

This repository contains code that gets data regarding financial disclosures from the Court Listener API main.py: contains driver code that interacts

Ali Rastegar 2 Aug 06, 2022
Documentation of the QR code found on new Austrian ID cards.

Austrian ID Card QR Code This document aims to be a complete documentation of the format used in the QR area on the back of new Austrian ID cards (Per

Gabriel Huber 9 Dec 12, 2022
Yu-Gi-Oh! Master Duel translation script

Yu-Gi-Oh! Master Duel translation script

715 Jan 08, 2023
:blue_book: Automatic documentation from sources, for MkDocs.

mkdocstrings Automatic documentation from sources, for MkDocs. Features - Python handler - Requirements - Installation - Quick usage Features Language

1.1k Jan 04, 2023
Documentation for the lottie file format

Lottie Documentation This repository contains both human-readable and machine-readable documentation about the Lottie format The documentation is avai

LottieFiles 25 Jan 05, 2023
Python Eacc is a minimalist but flexible Lexer/Parser tool in Python.

Python Eacc is a parsing tool it implements a flexible lexer and a straightforward approach to analyze documents.

Iury de oliveira gomes figueiredo 60 Nov 16, 2022