Provide a market analysis (R)

Overview

market-study

Provide a market analysis (R) - FRENCH

Produisez une étude de marché

Prérequis

Pour effectuer ce projet, vous devrez maîtriser la manipulation de données en Python ou R, appliquer ces langages à la statistique descriptive ainsi qu'à la classification automatique.

Scénario

Votre entreprise d'agroalimentaire souhaite se développer à l'international. Elle est spécialisée dans...

... le poulet !

L'international, oui, mais pour l'instant, le champ des possibles est bien large : aucun pays particulier ni aucun continent n'est pour le moment choisi. Tous les pays sont envisageables !

Votre objectif sera d'aider à cibler plus particulièrement certains pays, dans le but d'approfondir ensuite l'étude de marché. Plus particulièrement, l'idéal serait de produire des "groupes" de pays, plus ou moins gros, dont on connaît les caractéristiques.

Dans un premier temps, la stratégie est plutôt d'exporter les produits plutôt que de produire sur place, c'est-à-dire dans le(s) nouveau(x) pays ciblé(s).

Les données

Vous vous souvenez de la FAO, dans l'un de vos précédents projets ? Allez, on y retourne ! Vous connaissez déjà l'interface du site, à vous de retrouver les données qui vous seront utiles pour le projet.

Votre mission

Pour identifier les pays propices à une insertion dans le marché du poulet, il vous a été demandé de cibler les pays. Il vous faudra également étudier les régimes alimentaires de chaque pays, notamment en termes de protéines d'origine animale et en termes de calories.

Construisez votre échantillon contenant l'ensemble des pays disponibles, chacun caractérisé par ces variables :

différence de population entre une année antérieure (au choix) et l'année courante, exprimée en pourcentage ; proportion de protéines d'origine animale par rapport à la quantité totale de protéines dans la disponibilité alimentaire du pays ; disponibilité alimentaire en protéines par habitant ; disponibilité alimentaire en calories par habitant. Construisez un dendrogramme contenant l'ensemble des pays étudiés, puis coupez-le afin d'obtenir 5 groupes.

Caractérisez chacun de ces groupes selon les variables cités précédemment, et facultativement selon d'autres variables que vous jugerez pertinentes (ex : le PIB par habitant). Vous pouvez le faire en calculant la position des centroïdes de chacun des groupes, puis en les commentant et en les critiquant au vu de vos objectifs.

Donnez une courte liste de pays à cibler, en présentant leurs caractéristiques. Un découpage plus précis qu'en 5 groupes peut si besoin être effectué pour cibler un nombre raisonnable de pays.

Visualisez vos partitions dans le premier plan factoriel obtenu par ACP.

Dans votre partition, vous avez obtenu des groupes distincts. Vérifiez donc qu'ils diffèrent réellement. Pour cela, réalisez les tests statistiques suivants :

un test d'adéquation : parmi les 4 variables, ou parmi d'autres variables que vous trouverez pertinentes, trouvez une variable dont la loi est normale ; un test de comparaison de deux populations (dans le cas gaussien) : choisissez 2 clusters parmi ceux que vous aurez déterminé. Sur ces 2 clusters, testez la variable gaussienne grâce à un test de comparaison.

Analyze the Gravitational wave data stored at LIGO/VIRGO observatories

Gravitational-Wave-Analysis This project showcases how to analyze the Gravitational wave data stored at LIGO/VIRGO observatories, using Python program

1 Jan 23, 2022
An ETL framework + Monitoring UI/API (experimental project for learning purposes)

Fastlane An ETL framework for building pipelines, and Flask based web API/UI for monitoring pipelines. Project structure fastlane |- fastlane: (ETL fr

Dan Katz 2 Jan 06, 2022
Churn prediction with PySpark

It is expected to develop a machine learning model that can predict customers who will leave the company.

3 Aug 13, 2021
Project: Netflix Data Analysis and Visualization with Python

Project: Netflix Data Analysis and Visualization with Python Table of Contents General Info Installation Demo Usage and Main Functionalities Contribut

Kathrin Hälbich 2 Feb 13, 2022
A neural-based binary analysis tool

A neural-based binary analysis tool Introduction This directory contains the demo of a neural-based binary analysis tool. We test the framework using

Facebook Research 208 Dec 22, 2022
Top 50 best selling books on amazon

It's a dashboard that shows the detailed information about each book in the top 50 best selling books on amazon over the last ten years

Nahla Tarek 1 Nov 18, 2021
Automatic earthquake catalog building workflow: EQTransformer + Siamese EQTransformer + PickNet + REAL + HypoInverse

Automatic regional-scale earthquake catalog building workflow: EQTransformer + Siamese EQTransforme

Xiao Zhuowei 9 Nov 27, 2022
Hidden Markov Models in Python, with scikit-learn like API

hmmlearn hmmlearn is a set of algorithms for unsupervised learning and inference of Hidden Markov Models. For supervised learning learning of HMMs and

2.7k Jan 03, 2023
Single-Cell Analysis in Python. Scales to >1M cells.

Scanpy – Single-Cell Analysis in Python Scanpy is a scalable toolkit for analyzing single-cell gene expression data built jointly with anndata. It inc

Theis Lab 1.4k Jan 05, 2023
A Python adaption of Augur to prioritize cell types in perturbation analysis.

A Python adaption of Augur to prioritize cell types in perturbation analysis.

Theis Lab 2 Mar 29, 2022
PyChemia, Python Framework for Materials Discovery and Design

PyChemia, Python Framework for Materials Discovery and Design PyChemia is an open-source Python Library for materials structural search. The purpose o

Materials Discovery Group 61 Oct 02, 2022
A variant of LinUCB bandit algorithm with local differential privacy guarantee

Contents LDP LinUCB Description Model Architecture Dataset Environment Requirements Script Description Script and Sample Code Script Parameters Launch

Weiran Huang 4 Oct 25, 2022
Tools for the analysis, simulation, and presentation of Lorentz TEM data.

ltempy ltempy is a set of tools for Lorentz TEM data analysis, simulation, and presentation. Features Single Image Transport of Intensity Equation (SI

McMorran Lab 1 Dec 26, 2022
CPSPEC is an astrophysical data reduction software for timing

CPSPEC manual Introduction CPSPEC is an astrophysical data reduction software for timing. Various timing properties, such as power spectra and cross s

Tenyo Kawamura 1 Oct 20, 2021
Intake is a lightweight package for finding, investigating, loading and disseminating data.

Intake: A general interface for loading data Intake is a lightweight set of tools for loading and sharing data in data science projects. Intake helps

Intake 851 Jan 01, 2023
Conduits - A Declarative Pipelining Tool For Pandas

Conduits - A Declarative Pipelining Tool For Pandas Traditional tools for declaring pipelines in Python suck. They are mostly imperative, and can some

Kale Miller 7 Nov 21, 2021
Containerized Demo of Apache Spark MLlib on a Data Lakehouse (2022)

Spark-DeltaLake-Demo Reliable, Scalable Machine Learning (2022) This project was completed in an attempt to become better acquainted with the latest b

8 Mar 21, 2022
Data analysis and visualisation projects from a range of individual projects and applications

Python-Data-Analysis-and-Visualisation-Projects Data analysis and visualisation projects from a range of individual projects and applications. Python

Tom Ritman-Meer 1 Jan 25, 2022
Tuplex is a parallel big data processing framework that runs data science pipelines written in Python at the speed of compiled code

Tuplex is a parallel big data processing framework that runs data science pipelines written in Python at the speed of compiled code. Tuplex has similar Python APIs to Apache Spark or Dask, but rather

Tuplex 791 Jan 04, 2023
Python script for transferring data between three drives in two separate stages

Waterlock Waterlock is a Python script meant for incrementally transferring data between three folder locations in two separate stages. It performs ha

David Swanlund 13 Nov 10, 2021