Sane and flexible OpenAPI 3 schema generation for Django REST framework.

Overview

drf-spectacular

build-status-image codecov pypi-version docs

Sane and flexible OpenAPI 3.0 schema generation for Django REST framework.

This project has 3 goals:
  1. Extract as much schema information from DRF as possible.
  2. Provide flexibility to make the schema usable in the real world (not only toy examples).
  3. Generate a schema that works well with the most popular client generators.

The code is a heavily modified fork of the DRF OpenAPI generator, which is/was lacking all of the below listed features.

Features
  • Serializers modelled as components. (arbitrary nesting and recursion supported)
  • @extend_schema decorator for customization of APIView, Viewsets, function-based views, and @action
    • additional parameters
    • request/response serializer override (with status codes)
    • polymorphic responses either manually with PolymorphicProxySerializer helper or via rest_polymorphic's PolymorphicSerializer)
    • ... and more customization options
  • Authentication support (DRF natives included, easily extendable)
  • Custom serializer class support (easily extendable)
  • SerializerMethodField() type via type hinting or @extend_schema_field
  • i18n support
  • Tags extraction
  • Request/response/parameter examples
  • Description extraction from docstrings
  • Sane fallbacks
  • Sane operation_id naming (based on path)
  • Schema serving with SpectacularAPIView (Redoc and Swagger-UI views are also available)
  • Optional input/output serializer component split
  • Included support for:

For more information visit the documentation.

License

Provided by T. Franzel, Cashlink Technologies GmbH. Licensed under 3-Clause BSD.

Requirements

  • Python >= 3.6
  • Django (2.2, 3.1, 3.2)
  • Django REST Framework (3.10, 3.11, 3.12)

Installation

Install using pip...

$ pip install drf-spectacular

then add drf-spectacular to installed apps in settings.py

INSTALLED_APPS = [
    # ALL YOUR APPS
    'drf_spectacular',
]

and finally register our spectacular AutoSchema with DRF.

REST_FRAMEWORK = {
    # YOUR SETTINGS
    'DEFAULT_SCHEMA_CLASS': 'drf_spectacular.openapi.AutoSchema',
}

drf-spectacular ships with sane default settings that should work reasonably well out of the box. It is not necessary to specify any settings, but we recommend to specify at least some metadata.

SPECTACULAR_SETTINGS = {
    'TITLE': 'Your Project API',
    'DESCRIPTION': 'Your project description',
    'VERSION': '1.0.0',
    # OTHER SETTINGS
}

Release management

drf-spectacular deliberately stays below version 1.x.x to signal that every new version may potentially break you. For production we strongly recommend pinning the version and inspecting a schema diff on update.

With that said, we aim to be extremely defensive w.r.t. breaking API changes. However, we also acknowledge the fact that even slight schema changes may break your toolchain, as any existing bug may somehow also be used as a feature.

We define version increments with the following semantics. y-stream increments may contain potentially breaking changes to both API and schema. z-stream increments will never break the API and may only contain schema changes that should have a low chance of breaking you.

Take it for a spin

Generate your schema with the CLI:

$ ./manage.py spectacular --file schema.yml
$ docker run -p 80:8080 -e SWAGGER_JSON=/schema.yml -v ${PWD}/schema.yml:/schema.yml swaggerapi/swagger-ui

If you also want to validate your schema add the --validate flag. Or serve your schema directly from your API. We also provide convenience wrappers for swagger-ui or redoc.

from drf_spectacular.views import SpectacularAPIView, SpectacularRedocView, SpectacularSwaggerView
urlpatterns = [
    # YOUR PATTERNS
    path('api/schema/', SpectacularAPIView.as_view(), name='schema'),
    # Optional UI:
    path('api/schema/swagger-ui/', SpectacularSwaggerView.as_view(url_name='schema'), name='swagger-ui'),
    path('api/schema/redoc/', SpectacularRedocView.as_view(url_name='schema'), name='redoc'),
]

Usage

drf-spectacular works pretty well out of the box. You might also want to set some metadata for your API. Just create a SPECTACULAR_SETTINGS dictionary in your settings.py and override the defaults. Have a look at the available settings.

The toy examples do not cover your cases? No problem, you can heavily customize how your schema will be rendered.

Customization by using @extend_schema

Most customization cases should be covered by the extend_schema decorator. We usually get pretty far with specifying OpenApiParameter and splitting request/response serializers, but the sky is the limit.

from drf_spectacular.utils import extend_schema, OpenApiParameter, OpenApiExample
from drf_spectacular.types import OpenApiTypes

class AlbumViewset(viewset.ModelViewset)
    serializer_class = AlbumSerializer

    @extend_schema(
        request=AlbumCreationSerializer
        responses={201: AlbumSerializer},
    )
    def create(self, request):
        # your non-standard behaviour
        return super().create(request)

    @extend_schema(
        # extra parameters added to the schema
        parameters=[
            OpenApiParameter(name='artist', description='Filter by artist', required=False, type=str),
            OpenApiParameter(
                name='release',
                type=OpenApiTypes.DATE,
                location=OpenApiParameter.QUERY,
                description='Filter by release date',
                examples=[
                    OpenApiExample(
                        'Example 1',
                        summary='short optional summary',
                        description='longer description',
                        value='1993-08-23'
                    ),
                    ...
                ],
            ),
        ],
        # override default docstring extraction
        description='More descriptive text',
        # provide Authentication class that deviates from the views default
        auth=None,
        # change the auto-generated operation name
        operation_id=None,
        # or even completely override what AutoSchema would generate. Provide raw Open API spec as Dict.
        operation=None,
        # attach request/response examples to the operation.
        examples=[
            OpenApiExample(
                'Example 1',
                description='longer description',
                value=...
            ),
            ...
        ],
    )
    def list(self, request):
        # your non-standard behaviour
        return super().list(request)

    @extend_schema(
        request=AlbumLikeSerializer
        responses={204: None},
        methods=["POST"]
    )
    @extend_schema(description='Override a specific method', methods=["GET"])
    @action(detail=True, methods=['post', 'get'])
    def set_password(self, request, pk=None):
        # your action behaviour

More customization

Still not satisifed? You want more! We still got you covered. Visit customization for more information.

Testing

Install testing requirements.

$ pip install -r requirements.txt

Run with runtests.

$ ./runtests.py

You can also use the excellent tox testing tool to run the tests against all supported versions of Python and Django. Install tox globally, and then simply run:

$ tox
Owner
T. Franzel
T. Franzel
Bring RGB to life in Neovim

Bring RGB to life in Neovim Change your RGB devices' color depending on Neovim's mode. Fast and asynchronous plugin to live your vim-life to the fulle

Antoine 40 Oct 27, 2022
An ongoing curated list of OS X best applications, libraries, frameworks and tools to help developers set up their macOS Laptop.

macOS Development Setup Welcome to MacOS Local Development & Setup. An ongoing curated list of OS X best applications, libraries, frameworks and tools

Paul Veillard 3 Apr 03, 2022
The mitosheet package, trymito.io, and other public Mito code.

Mito Monorepo Mito is a spreadsheet that lives inside your JupyterLab notebooks. It allows you to edit Pandas dataframes like an Excel file, and gener

Mito 1.4k Dec 31, 2022
Legacy python processor for AsciiDoc

AsciiDoc.py This branch is tracking the alpha, in-progress 10.x release. For the stable 9.x code, please go to the 9.x branch! AsciiDoc is a text docu

AsciiDoc.py 178 Dec 25, 2022
sphinx builder that outputs markdown files.

sphinx-markdown-builder sphinx builder that outputs markdown files Please ★ this repo if you found it useful ★ ★ ★ If you want frontmatter support ple

Clay Risser 144 Jan 06, 2023
python wrapper for simple-icons

simpleicons Use a wide-range of icons derived from the simple-icons repo in python. Go to their website for a full list of icons. The slug version mus

Sachin Raja 14 Nov 07, 2022
Yu-Gi-Oh! Master Duel translation script

Yu-Gi-Oh! Master Duel translation script

715 Jan 08, 2023
This is a repository for "100 days of code challenge" projects. You can reach all projects from beginner to professional which are written in Python.

100 Days of Code It's a challenge that aims to gain code practice and enhance programming knowledge. Day #1 Create a Band Name Generator It's actually

SelenNB 2 May 12, 2022
Speed up Sphinx builds by selectively removing toctrees from some pages

Remove toctrees from Sphinx pages Improve your Sphinx build time by selectively removing TocTree objects from pages. This is useful if your documentat

Executable Books 8 Jan 04, 2023
Gtech μLearn Sample_bot

Ser_bot Gtech μLearn Sample_bot Do Greet a newly joined member in a channel (random message) While adding a reaction to a message send a message to a

Jerin Paul 1 Jan 19, 2022
A Python library that simplifies the extraction of datasets from XML content.

xmldataset: simple xml parsing 🗃️ XML Dataset: simple xml parsing Documentation: https://xmldataset.readthedocs.io A Python library that simplifies t

James Spurin 75 Dec 30, 2022
Some custom tweaks to the results produced by pytkdocs.

pytkdocs_tweaks Some custom tweaks for pytkdocs. For use as part of the documentation-generation-for-Python stack that comprises mkdocs, mkdocs-materi

Patrick Kidger 4 Nov 24, 2022
level2-data-annotation_cv-level2-cv-15 created by GitHub Classroom

[AI Tech 3기 Level2 P Stage] 글자 검출 대회 팀원 소개 김규리_T3016 박정현_T3094 석진혁_T3109 손정균_T3111 이현진_T3174 임종현_T3182 Overview OCR (Optimal Character Recognition) 기술

6 Jun 10, 2022
epub2sphinx is a tool to convert epub files to ReST for Sphinx

epub2sphinx epub2sphinx is a tool to convert epub files to ReST for Sphinx. It uses Pandoc for converting HTML data inside epub files into ReST. It cr

Nihaal 8 Dec 15, 2022
Course Materials for Math 340

UBC Math 340 Materials This repository aims to be the one repository for which you can find everything you about Math 340. Lecture Notes Lecture Notes

2 Nov 25, 2021
A website for courses of Major Computer Science, NKU

A website for courses of Major Computer Science, NKU

Sakura 0 Oct 06, 2022
Create docsets for Dash.app-compatible API browser.

doc2dash: Create Docsets for Dash.app and Clones doc2dash is an MIT-licensed extensible Documentation Set generator intended to be used with the Dash.

Hynek Schlawack 498 Dec 30, 2022
Documentation and issues for Pylance - Fast, feature-rich language support for Python

Documentation and issues for Pylance - Fast, feature-rich language support for Python

Microsoft 1.5k Dec 29, 2022
Types that make coding in Python quick and safe.

Type[T] Types that make coding in Python quick and safe. Type[T] works best with Python 3.6 or later. Prior to 3.6, object types must use comment type

Contains 17 Aug 01, 2022
BakTst_Org is a backtesting system for quantitative transactions.

BakTst_Org 中文reademe:传送门 Introduction: BakTst_Org is a prototype of the backtesting system used for BTC quantitative trading. This readme is mainly di

18 May 08, 2021