BakTst_Org is a backtesting system for quantitative transactions.

Overview

BakTst_Org

中文reademe:传送门

Introduction: BakTst_Org is a prototype of the backtesting system used for BTC quantitative trading.


mind Mapping This readme is mainly divided into the following parts:

  • What kind of person is suitable for studying BakTst_Org?
  • import library
  • BakTst_Org's framework and various modules of the framework
  • How to use BakTst_Org?
  • Extension
  • Question
  • Results map
  • Some ideas for the future
  • Thanks list

What kind of person is suitable for studying BakTst_Org?

BakTst_Org is just a prototype, so the rows of code is not large. It's about four hundred lines. But it also has all the features you need, such as: multi-process, simulation, a crawler that obtain trading data.

So it is suitable for these people:

  • Python enthusiast
  • Script developer
  • Financial enthusiasts
  • Quantify traders

Library to be imported

Talib, multiprocessing, pandas, json, numpy, time, requests

BakTst framework and introduction to each module of the framework

BakTst_Org mainly divides six modules:

  • craw (crawler module)
  • Feed (data acquisition module)
  • Strategy (strategy module)
  • Portfollio (position management module)
  • Execution (order execution module)
  • main function

craw

This module is a separate module, and the API called is the bittrex api, which is mainly used to obtain transaction data and then write to the txt file.

Api: https://api.bittrex.com/api/v1.1/public/getmarkethistory?market=usdt-btc If you want to obtain a transaction data of a currency, you only need to modify the last usdt-btc transaction pair. For example: 'usdt to ltc', you can modify it to usdt-ltc.

The time limit for getting is 60 requests per minute, so a time.sleep(1) is added.

The data that I obtained is divided into two files, one is the complete transaction data that includes details of each transaction, and the other is consisted of a time period information that includes the highest price, the lowest price, the opening price, the closing price, the transaction volume and the time.

For the format of the data, please checking the value of the two txt files in the ‘craw/’ path.

Feed

This module is used to transfer the transaction data and the initialized data into BakTst.

The initialized data includes these parameters:

  • data: The highest price, lowest price, opening price, closing price, time, and the transaction volume in a period of time. And the format is dataframe.
  • coin_number: The number of coins already owned by us.
  • principal: The principal already owned by us.

Strategy

This module is used to analyze the transaction data to predict the trend of price. Firstly it receives the transaction data from the Feed module. Secondly, it will analyze the transaction data through some function in Strategy module. Thirdly, it will sets buy_index (buy index) and sell_index (sell index). Lastly, it will transport the buy_index and the sell_index to Portfollio module.

The total structure of the Strategy module includes two parts. The one is 'Strategy.py' that is writed Strategic judgment, and the other one is 'Strategy_fun.py' file that writed two strategic functions, and a format conversion function.

Portfollio

This module is used to manage position. Although we have judged the buying and selling trend, we need to limit the position. For example, we can set a limiting that the proportion of the position must less than 0.5. So, this module plays a limiting role. Then, the opening and selling signals will be sent to the next one--Execution module.

There are the meaning of some parameters:

  • buy_amount and sell_amount: It is a fixed rate to trade. The fixed rate may not be same in the real situation, but we just use a software to trade.
  • trade_sigle: It is a trading signal. The ‘sell’ is for sale. The ‘buy’ is for purchase. The ‘None’ is for inaction. In the subsequent code, that is a judgment basis.
  • judge_position: It is standard to judge position, and the value is less than 1.

Execution

This module is used to execute an order to simulate the real situation about trading. And it will eventually return a total profit and loss. There are the meaning of some parameters:

  • tip: Handling fee.
  • buy_flap: The slippage of buying.
  • sell_flap: The slippage of selling.
  • buy_last_price and sell_last_price: the last price of trading.

Main function

This module is used to convert the data of the txt document into the data of the dataframe format and send it to the whole system. Finally, the system will return a final number of the coin and the number of the principal. Then, it will compares the initial price and final price to calculate profit and loss. There are the meaning of some parameters:

  • earn: earn.
  • lose: loss.
  • balance: no loss, no profit.

How to use BakTst_Org

  • Firstly, you need to collect data by using the craw.py file in the craw module.
  • Secondly, you need to run the BakTst_Org.py file to see the output.

Extension

  • Dynamic variable: Some values is fixed, such as principal, position and handling fee. But there are some values ​​that can be dynamically changed, such as slippage, single billing amount.
  • Function of the 'Strategy_fun.py' in Strategy module: I just wrote two functions, but you can add more.

Question

There are two questions that I met:

  • I have met a problem about naming coverage. The open is a function in python, and I use with open (addr , 'w') as w: already, so there was a mistake when I use 'open' to representative the 'open price'.
  • It is a problem acout Multi-process. I used the Multi-process pool. But when I add the method in class to the Multi-process pool, I found out that I can't call them. Finally, I can call these methods, but I need to run multiple processes on the outside of class.

Results map

result1 result2

Some ideas for the future

I published BakTst_Org, and everyone can reference from it. But if it is used to trade in the real quantitative transaction, it can't. I will develop a quantitative trading system that can be used to trade in the real quantitative transaction based on BakTst_Org.

Thanks list

  • Thanks to everyone in 慢雾区远不止狗币技术群, helped me solve some programming problems.
  • Thanks to greatshi. Greatshi,a master in the field of quantitative trading. He patiently answered some questions that I met. Thank you.
Documentation generator for C++ based on Doxygen and mosra/m.css.

mosra/m.css is a Doxygen-based documentation generator that significantly improves on Doxygen's default output by controlling some of Doxygen's more unruly options, supplying it's own slick HTML+CSS

Mark Gillard 109 Dec 07, 2022
This is a small project written to help build documentation for projects in less time.

Documentation-Builder This is a small project written to help build documentation for projects in less time. About This project builds documentation f

Tom Jebbo 2 Jan 17, 2022
A simple flask application to collect annotations for the Turing Change Point Dataset, a benchmark dataset for change point detection algorithms

AnnotateChange Welcome to the repository of the "AnnotateChange" application. This application was created to collect annotations of time series data

The Alan Turing Institute 16 Jul 21, 2022
A powerful Sphinx changelog-generating extension.

What is Releases? Releases is a Python (2.7, 3.4+) compatible Sphinx (1.8+) extension designed to help you keep a source control friendly, merge frien

Jeff Forcier 166 Dec 29, 2022
VSCode extension that generates docstrings for python files

VSCode Python Docstring Generator Visual Studio Code extension to quickly generate docstrings for python functions. Features Quickly generate a docstr

Nils Werner 506 Jan 03, 2023
A PyTorch implementation of Deep SAD, a deep Semi-supervised Anomaly Detection method.

Deep SAD: A Method for Deep Semi-Supervised Anomaly Detection This repository provides a PyTorch implementation of the Deep SAD method presented in ou

Lukas Ruff 276 Jan 04, 2023
300+ Python Interview Questions

300+ Python Interview Questions

Pradeep Kumar 1.1k Jan 02, 2023
💡 Catatan Materi Bahasa Pemrogramman Python

Repository catatan kuliah Andika Tulus Pangestu selama belajar Dasar Pemrograman dengan Python.

0 Oct 10, 2021
SqlAlchemy Flask-Restful Swagger Json:API OpenAPI

SAFRS: Python OpenAPI & JSON:API Framework Overview Installation JSON:API Interface Resource Objects Relationships Methods Custom Methods Class Method

Thomas Pollet 361 Nov 16, 2022
This repo provides a package to automatically select a random seed based on ancient Chinese Xuanxue

🤞 Random Luck Deep learning is acturally the alchemy. This repo provides a package to automatically select a random seed based on ancient Chinese Xua

Tong Zhu(朱桐) 33 Jan 03, 2023
A markdown wiki and dashboarding system for Datasette

datasette-notebook A markdown wiki and dashboarding system for Datasette This is an experimental alpha and everything about it is likely to change. In

Simon Willison 19 Apr 20, 2022
swagger-codegen contains a template-driven engine to generate documentation, API clients and server stubs in different languages by parsing your OpenAPI / Swagger definition.

Master (2.4.25-SNAPSHOT): 3.0.31-SNAPSHOT: Maven Central ⭐ ⭐ ⭐ If you would like to contribute, please refer to guidelines and a list of open tasks. ⭐

Swagger 15.2k Dec 31, 2022
A Python library for setting up projects using tabular data.

A Python library for setting up projects using tabular data. It can create project folders, standardize delimiters, and convert files to CSV from either individual files or a directory.

0 Dec 13, 2022
FireEye Related Projects

FireEye FireEye Related Projects Tor-IP-Collector Simple python script that will collect a list of TOR IPs from the SecOps Institute Github and inject

Taran Ulrich 2 Nov 12, 2022
Exercism exercises in Python.

Exercism exercises in Python.

Exercism 1.3k Jan 04, 2023
Deduplicating archiver with compression and authenticated encryption.

More screencasts: installation, advanced usage What is BorgBackup? BorgBackup (short: Borg) is a deduplicating backup program. Optionally, it supports

BorgBackup 9k Jan 09, 2023
Contains the assignments from the course Building a Modern Computer from First Principles: From Nand to Tetris.

Contains the assignments from the course Building a Modern Computer from First Principles: From Nand to Tetris.

Matheus Rodrigues 1 Jan 20, 2022
Python Programming (Practical) (1-25) Download 👇🏼

BCA-603 : Python Programming (Practical) (1-25) Download zip 🙂 🌟 How to run programs : Clone or download this repo to your computer. Unzip (If you d

Milan Jadav 2 Jun 02, 2022
ReStructuredText and Sphinx bridge to Doxygen

Breathe Packagers: PGP signing key changes for Breathe = v4.23.0. https://github.com/michaeljones/breathe/issues/591 This is an extension to reStruct

Michael Jones 643 Dec 31, 2022
An introduction to hikari, complete with different examples for different command handlers.

An intro to hikari This repo provides some simple examples to get you started with hikari. Contained in this repo are bots designed with both the hika

Ethan Henderson 18 Nov 29, 2022