level2-data-annotation_cv-level2-cv-15 created by GitHub Classroom

Overview

[AI Tech 3기 Level2 P Stage] 글자 검출 대회

image

팀원 소개

김규리_T3016 박정현_T3094 석진혁_T3109 손정균_T3111 이현진_T3174 임종현_T3182

Overview

OCR (Optimal Character Recognition) 기술은 사람이 직접 쓰거나 이미지 속에 있는 문자를 얻은 다음 이를 컴퓨터가 인식할 수 있도록 하는 기술로, 컴퓨터 비전 분야에서 현재 널리 쓰이는 대표적인 기술 중 하나입니다.

OCR task는 글자 검출 (text detection), 글자 인식 (text recognition), 정렬기 (Serializer) 등의 모듈로 이루어져 있는데 본 대회는 글자 검출 (text detection)만을 해결하게 됩니다.

데이터를 구성하고 활용하는 방법에 집중하는 것을 장려하는 취지에서, 제공되는 베이스 코드 중 모델과 관련한 부분을 변경하는 것이 금지되어 있습니다. 데이터 수집과 preprocessing, data augmentation 그리고 optimizer, learning scheduler 등 최적화 방식을 변경할 수 있습니다.

  • Input : 글자가 포함된 전체 이미지
  • Output : bbox 좌표가 포함된 UFO Format

평가방법

  • DetEval

    이미지 레벨에서 정답 박스가 여러개 존재하고, 예측한 박스가 여러개가 있을 경우, 박스끼리의 다중 매칭을 허용하여 점수를 주는 평가방법 중 하나 입니다

    1. 모든 정답/예측박스들에 대해서 Area Recall, Area Precision을 미리 계산해냅니다.

    2. 모든 정답 박스와 예측 박스를 순회하면서, 매칭이 되었는지 판단하여 박스 레벨로 정답 여부를 측정합니다.

    3. 모든 이미지에 대하여 Recall, Precision을 구한 이후, 최종 F1-Score은 모든 이미지 레벨에서 측정 값의 평균으로 측정됩니다.

      image

Final Score  🏅

  • Public : f1 0.6897 → Private f1 : 0.6751
  • Public : 11위/19팀 → Private : 9위/19팀

image

Archive contents

template
├──code
│  ├──augmentation.py
│  ├──convert_mlt.py
│  ├──dataset.py
│  ├──deteval.py
│  ├──east_dataset.py
│  ├──inference.py
│  ├──loss.py
│  ├──model.py
│  └──train.py
└──input
   └──ICDAR2017_Korean
		  └──data
			  	├──images
		      └──ufo
			        ├──train.json
							└──val.json

Dataset

  • ICDAR MLT17 Korean : 536 images ⊆ ICDAR MLT17 : 7,200 images

  • ICDAR MLT19 : 10,000 images

  • ICAR ArT : 5,603 images

Experiment

Results

dataset 데이터 수 LB score (public→private) Recall Precision
01 ICDAR17_Korean 536 0.4469 → 0.4732 0.3580 → 0.3803 0.5944 → 0.6264
02 Camper (폴리곤 수정 전) 1288 0.4543 → 0.5282 0.3627 → 0.4349 0.6077 → 0.6727
03 Camper (폴리곤 수정 후) 1288 0.4644 → 0.5298 0.3491 → 0.4294 0.6936 → 0.6913
04 ICDAR17_Korean + Camper 1824 0.4447 → 0.5155 0.3471 → 0.4129 0.6183 → 0.6858
05 ICDAR17(859) 859 0.5435 → 0.5704 0.4510 → 0.4713 0.6837 → 0.7222
06 ICDAR17_MLT 7200 0.6749 → 0.6751 0.5877 → 0.5887 0.7927 → 0.7912
07 ICDAR19+ArT 약 15000 0.6344 → 0.6404 0.5489 → 0.5607 0.7514 → 0.7465

Requirements

pip install -r requirements.txt

UFO Format으로 변환

python convert_mlt.py

SRC_DATASET_DIR = {변환 전 data 경로}

DST_DATASET_DIR = {변환 된 data 경로}

UFO Format ****

File Name
    ├── img_h
    ├── img_w
    └── words
        ├── points
        ├── transcription
        ├── language
        ├── illegibillity
        ├── orientation
        └── word_tags

Train.py

python train.py --data_dir {train data path} --val_data_dir {val data path} --name {wandb run name} --exp_name {model name
Uses diff command to compare expected output with student's submission output

AUTOGRADER for GRADESCOPE using diff with partial grading Description: Uses diff command to compare expected output with student's submission output U

2 Jan 11, 2022
Numpy's Sphinx extensions

numpydoc -- Numpy's Sphinx extensions This package provides the numpydoc Sphinx extension for handling docstrings formatted according to the NumPy doc

NumPy 234 Dec 26, 2022
A next-generation curated knowledge sharing platform for data scientists and other technical professions.

Knowledge Repo The Knowledge Repo project is focused on facilitating the sharing of knowledge between data scientists and other technical roles using

Airbnb 5.2k Dec 27, 2022
Bring RGB to life in Neovim

Bring RGB to life in Neovim Change your RGB devices' color depending on Neovim's mode. Fast and asynchronous plugin to live your vim-life to the fulle

Antoine 40 Oct 27, 2022
Projeto em Python colaborativo para o Bootcamp de Dados do Itaú em parceria com a Lets Code

🧾 lets-code-todo-list por Henrique V. Domingues e Josué Montalvão Projeto em Python colaborativo para o Bootcamp de Dados do Itaú em parceria com a L

Henrique V. Domingues 1 Jan 11, 2022
Elliptic curve cryptography (ed25519) beginner tutorials in Python 3

ed25519_tutorials Elliptic curve cryptography (ed25519) beginner tutorials in Python 3 Instructions Just download the repo and read the tutorial files

6 Dec 27, 2022
A simple malware that tries to explain the logic of computer viruses with Python.

Simple-Virus-With-Python A simple malware that tries to explain the logic of computer viruses with Python. What Is The Virus ? Computer viruses are ma

Xrypt0 6 Nov 18, 2022
Quick tutorial on orchest.io that shows how to build multiple deep learning models on your data with a single line of code using python

Deep AutoViML Pipeline for orchest.io Quickstart Build Deep Learning models with a single line of code: deep_autoviml Deep AutoViML helps you build te

Ram Seshadri 6 Oct 02, 2022
Mozilla Campus Club CCEW is a student committee working to spread awareness on Open Source software.

Mozilla Campus Club CCEW is a student committee working to spread awareness on Open Source software. We organize webinars and workshops on different technical topics and making Open Source contributi

Mozilla-Campus-Club-Cummins 8 Jun 15, 2022
Data-Scrapping SEO - the project uses various data scrapping and Google autocompletes API tools to provide relevant points of different keywords so that search engines can be optimized

Data-Scrapping SEO - the project uses various data scrapping and Google autocompletes API tools to provide relevant points of different keywords so that search engines can be optimized; as this infor

Vibhav Kumar Dixit 2 Jul 18, 2022
Generate a backend and frontend stack using Python and json-ld, including interactive API documentation.

d4 - Base Project Generator Generate a backend and frontend stack using Python and json-ld, including interactive API documentation. d4? What is d4 fo

Markus Leist 3 May 03, 2022
Highlight Translator can help you translate the words quickly and accurately.

Highlight Translator can help you translate the words quickly and accurately. By only highlighting, copying, or screenshoting the content you want to translate anywhere on your computer (ex. PDF, PPT

Coolshan 48 Dec 21, 2022
A simple USI Shogi Engine written in python using python-shogi.

Revengeshogi My attempt at creating a USI Shogi Engine in python using python-shogi. Current State of Engine Currently only generating random moves us

1 Jan 06, 2022
An awesome Data Science repository to learn and apply for real world problems.

AWESOME DATA SCIENCE An open source Data Science repository to learn and apply towards solving real world problems. This is a shortcut path to start s

Academic.io 20.3k Jan 09, 2023
ReStructuredText and Sphinx bridge to Doxygen

Breathe Packagers: PGP signing key changes for Breathe = v4.23.0. https://github.com/michaeljones/breathe/issues/591 This is an extension to reStruct

Michael Jones 643 Dec 31, 2022
Automated generation of real Swagger/OpenAPI 2.0 schemas from Django REST Framework code.

drf-yasg - Yet another Swagger generator Generate real Swagger/OpenAPI 2.0 specifications from a Django Rest Framework API. Compatible with Django Res

Cristi Vîjdea 3k Dec 31, 2022
Python Deep Dive Course - Accompanying Materials

Python Deep Dive Various Jupyter notebooks and Python sources associated with my Udemy Python 3 Deep Dive course series: Part 1: Mainly functional pro

Fred Baptiste 1.1k Dec 30, 2022
Deduplicating archiver with compression and authenticated encryption.

More screencasts: installation, advanced usage What is BorgBackup? BorgBackup (short: Borg) is a deduplicating backup program. Optionally, it supports

BorgBackup 9k Jan 09, 2023
A repository of links with advice related to grad school applications, research, phd etc

A repository of links with advice related to grad school applications, research, phd etc

Shaily Bhatt 946 Dec 30, 2022
Swagger Documentation Generator for Django REST Framework: deprecated

Django REST Swagger: deprecated (2019-06-04) This project is no longer being maintained. Please consider drf-yasg as an alternative/successor. I haven

Marc Gibbons 2.6k Jan 03, 2023