level2-data-annotation_cv-level2-cv-15 created by GitHub Classroom

Overview

[AI Tech 3기 Level2 P Stage] 글자 검출 대회

image

팀원 소개

김규리_T3016 박정현_T3094 석진혁_T3109 손정균_T3111 이현진_T3174 임종현_T3182

Overview

OCR (Optimal Character Recognition) 기술은 사람이 직접 쓰거나 이미지 속에 있는 문자를 얻은 다음 이를 컴퓨터가 인식할 수 있도록 하는 기술로, 컴퓨터 비전 분야에서 현재 널리 쓰이는 대표적인 기술 중 하나입니다.

OCR task는 글자 검출 (text detection), 글자 인식 (text recognition), 정렬기 (Serializer) 등의 모듈로 이루어져 있는데 본 대회는 글자 검출 (text detection)만을 해결하게 됩니다.

데이터를 구성하고 활용하는 방법에 집중하는 것을 장려하는 취지에서, 제공되는 베이스 코드 중 모델과 관련한 부분을 변경하는 것이 금지되어 있습니다. 데이터 수집과 preprocessing, data augmentation 그리고 optimizer, learning scheduler 등 최적화 방식을 변경할 수 있습니다.

  • Input : 글자가 포함된 전체 이미지
  • Output : bbox 좌표가 포함된 UFO Format

평가방법

  • DetEval

    이미지 레벨에서 정답 박스가 여러개 존재하고, 예측한 박스가 여러개가 있을 경우, 박스끼리의 다중 매칭을 허용하여 점수를 주는 평가방법 중 하나 입니다

    1. 모든 정답/예측박스들에 대해서 Area Recall, Area Precision을 미리 계산해냅니다.

    2. 모든 정답 박스와 예측 박스를 순회하면서, 매칭이 되었는지 판단하여 박스 레벨로 정답 여부를 측정합니다.

    3. 모든 이미지에 대하여 Recall, Precision을 구한 이후, 최종 F1-Score은 모든 이미지 레벨에서 측정 값의 평균으로 측정됩니다.

      image

Final Score  🏅

  • Public : f1 0.6897 → Private f1 : 0.6751
  • Public : 11위/19팀 → Private : 9위/19팀

image

Archive contents

template
├──code
│  ├──augmentation.py
│  ├──convert_mlt.py
│  ├──dataset.py
│  ├──deteval.py
│  ├──east_dataset.py
│  ├──inference.py
│  ├──loss.py
│  ├──model.py
│  └──train.py
└──input
   └──ICDAR2017_Korean
		  └──data
			  	├──images
		      └──ufo
			        ├──train.json
							└──val.json

Dataset

  • ICDAR MLT17 Korean : 536 images ⊆ ICDAR MLT17 : 7,200 images

  • ICDAR MLT19 : 10,000 images

  • ICAR ArT : 5,603 images

Experiment

Results

dataset 데이터 수 LB score (public→private) Recall Precision
01 ICDAR17_Korean 536 0.4469 → 0.4732 0.3580 → 0.3803 0.5944 → 0.6264
02 Camper (폴리곤 수정 전) 1288 0.4543 → 0.5282 0.3627 → 0.4349 0.6077 → 0.6727
03 Camper (폴리곤 수정 후) 1288 0.4644 → 0.5298 0.3491 → 0.4294 0.6936 → 0.6913
04 ICDAR17_Korean + Camper 1824 0.4447 → 0.5155 0.3471 → 0.4129 0.6183 → 0.6858
05 ICDAR17(859) 859 0.5435 → 0.5704 0.4510 → 0.4713 0.6837 → 0.7222
06 ICDAR17_MLT 7200 0.6749 → 0.6751 0.5877 → 0.5887 0.7927 → 0.7912
07 ICDAR19+ArT 약 15000 0.6344 → 0.6404 0.5489 → 0.5607 0.7514 → 0.7465

Requirements

pip install -r requirements.txt

UFO Format으로 변환

python convert_mlt.py

SRC_DATASET_DIR = {변환 전 data 경로}

DST_DATASET_DIR = {변환 된 data 경로}

UFO Format ****

File Name
    ├── img_h
    ├── img_w
    └── words
        ├── points
        ├── transcription
        ├── language
        ├── illegibillity
        ├── orientation
        └── word_tags

Train.py

python train.py --data_dir {train data path} --val_data_dir {val data path} --name {wandb run name} --exp_name {model name
Modified fork of CPython's ast module that parses `# type:` comments

Typed AST typed_ast is a Python 3 package that provides a Python 2.7 and Python 3 parser similar to the standard ast library. Unlike ast up to Python

Python 217 Dec 06, 2022
100 numpy exercises (with solutions)

100 numpy exercises This is a collection of numpy exercises from numpy mailing list, stack overflow, and numpy documentation. I've also created some p

Nicolas P. Rougier 9.5k Dec 30, 2022
Second version of SQL-PYTHON-Practicas

SQLite-Python Acerca de | Autor Sobre el repositorio Segunda version de SQL-PYTHON-Practicas 💻 Tecnologias Visual Studio Code Python SQLite3 📖 Requi

1 Jan 06, 2022
Testing-crud-login-drf - Creation of an application in django on music albums

testing-crud-login-drf Creation of an application in django on music albums Befo

Juan 1 Jan 11, 2022
JMESPath is a query language for JSON.

JMESPath JMESPath (pronounced "james path") allows you to declaratively specify how to extract elements from a JSON document. For example, given this

1.7k Dec 31, 2022
Anomaly Detection via Reverse Distillation from One-Class Embedding

Anomaly Detection via Reverse Distillation from One-Class Embedding Implementation (Official Code ⭐️ ⭐️ ⭐️ ) Environment pytorch == 1.91 torchvision =

73 Dec 19, 2022
The blazing-fast Discord bot.

Wavy Wavy is an open-source multipurpose Discord bot built with pycord. Wavy is still in development, so use it at your own risk. Tools and services u

Wavy 7 Dec 27, 2022
Documentation for the lottie file format

Lottie Documentation This repository contains both human-readable and machine-readable documentation about the Lottie format The documentation is avai

LottieFiles 25 Jan 05, 2023
Quick tutorial on orchest.io that shows how to build multiple deep learning models on your data with a single line of code using python

Deep AutoViML Pipeline for orchest.io Quickstart Build Deep Learning models with a single line of code: deep_autoviml Deep AutoViML helps you build te

Ram Seshadri 6 Oct 02, 2022
A simple tutorial to get you started with Discord and it's Python API

Hello there Feel free to fork and star, open issues if there are typos or you have a doubt. I decided to make this post because as a newbie I never fo

Sachit 1 Nov 01, 2021
Assignments from Launch X's python introduction course

Launch X - On Boarding Assignments from Launch X's Python Introduction Course Explore the docs » Report Bug · Request Feature Table of Contents About

Javier Méndez 0 Mar 15, 2022
Numpy's Sphinx extensions

numpydoc -- Numpy's Sphinx extensions This package provides the numpydoc Sphinx extension for handling docstrings formatted according to the NumPy doc

NumPy 234 Dec 26, 2022
Rust Markdown Parsing Benchmarks

Rust Markdown Parsing Benchmarks This repo tries to assess Rust markdown parsing

Ed Page 1 Aug 24, 2022
An introduction course for Python provided by VetsInTech

Introduction to Python This is an introduction course for Python provided by VetsInTech. For every "boot camp", there usually is a pre-req, but becaus

Vets In Tech 2 Dec 02, 2021
Count the number of lines of code in a directory, minus the irrelevant stuff

countloc Simple library to count the lines of code in a directory (excluding stuff like node_modules) Simply just run: countloc node_modules args to

Anish 4 Feb 14, 2022
DataRisk Detection Learning Resources

DataRisk Detection Learning Resources Data security: Based on the "data-centric security system" position, it generally refers to the entire security

Liao Wenzhe 59 Dec 05, 2022
A collection of lecture notes, drawings, flash cards, mind maps, scripts

Neuroanatomy A collection of lecture notes, drawings, flash cards, mind maps, scripts and other helpful resources for the course "Functional Organizat

Georg Reich 3 Sep 21, 2022
Beautiful static documentation generator for OpenAPI/Swagger 2.0

Spectacle The gentleman at REST Spectacle generates beautiful static HTML5 documentation from OpenAPI/Swagger 2.0 API specifications. The goal of Spec

Sourcey 1.3k Dec 13, 2022
A web app builds using streamlit API with python backend to analyze and pick insides from multiple data formats.

Data-Analysis-Web-App Data Analysis Web App can analysis data in multiple formates(csv, txt, xls, xlsx, ods, odt) and gives shows you the analysis in

Kumar Saksham 19 Dec 09, 2022
Python Deep Dive Course - Accompanying Materials

Python Deep Dive Various Jupyter notebooks and Python sources associated with my Udemy Python 3 Deep Dive course series: Part 1: Mainly functional pro

Fred Baptiste 1.1k Dec 30, 2022