convert a dict-list object from / to a typed object(class instance with type annotation)

Overview

objtyping 带类型定义的对象转换器

由来

Python不是强类型语言,开发人员没有给数据定义类型的习惯。这样虽然灵活,但处理复杂业务逻辑的时候却不够方便——缺乏类型检查可能导致很难发现错误,在IDE里编码时也没有代码提示。所以开发了这个小工具来解决它。

基本用法

  • 首先定义业务类,并通过类变量定义每个字段的类型。
from typing import List


class Person:
    name: str
    age: int


class Company:
    name: str
    revenue: float
    employees: List[Person]

之所以选择类变量来定义,是因为它最简洁和直观。相比之下,如果在__init__方法中初始化实例变量,是没有办法获取类型定义(type_hint)的;如果用@property注解或者getter,setter方法的话,显然就更复杂了。它们都不如直接定义类变量简单优美。不过使用类变量也有缺点:就是它在这里被当成元数据来使用了,如果真的需要定义类级别共享的变量,无法区分。这个问题可以在后面通过开发自定义注解来解决。

  • 下一步就可以把符合这个类定义结构的dict-list嵌套数据,转化为该类实例对象了:
from objtyping import objtyping

company1 = objtyping.from_dict_list({
    'name': 'Apple',
    'revenue': 18.5,
    'employees': [{
        'name': 'Tom',
        'age': 20
    }, {
        'name': 'Jerry',
        'age': 31
    }]
}, Company)

此时的company1就是完整的Company对象了, 可以直接使用company1.name, company1.employees[0].name 等形式访问里面的属性。

  • 当然也可以把业务对象再转回dict-list嵌套的形式
from objtyping import objtyping

dict_list = objtyping.to_dict_list(company1)

此时的dict_list对象,就是一大堆dict和list层级嵌套的原始类型数据

使用场景

初始化对象

Python没有js那么方便的初始化对象方式,但有这个工具就可以这样写(就是前面基础使用的汇总):

from typing import List

from objtyping import objtyping


class Person:
    name: str
    age: int


class Company:
    name: str
    revenue: float
    employees: List[Person]

    def __str__(self):  # 其实一般可能都是这样简单用一下的
        return "'{}' has {} employees: {}".format(self.name, len(self.employees), ' and '.join(map(lambda emp: emp.name, self.employees)))


if __name__ == '__main__':
    company1 = objtyping.from_dict_list({
        'name': 'Apple',
        'revenue': 18.5,
        'employees': [{
            'name': 'Tom',
            'age': 20
        }, {
            'name': 'Jerry',
            'age': 31
        }]
    }, Company)

    print(company1)

输出结果:

'Apple' has 2 employees: Tom and Jerry

序列化/反序列化

Python的常见的序列化需求,包括json和yaml数据格式,它们都有相对完善的处理库。但同样是不强调类型的缘故,它们处理的对象都是原始的dict-list格式。正好可以借助这个工具实现进一步转化。

json

示例

import json
import sys
from typing import List

from objtyping import objtyping


class X:
    x: int
    y: str


class A:
    q: str
    a: str
    b: int
    c: List[X]


if __name__ == '__main__':
    print("\r\n-----json-------")
    json_obj = json.loads('{"q":9, "a":"Mark", "b":3, "c":[{"x":15, "y":"male"},{"x":9, "y":"female", "z":13}]}')
    typed_obj = objtyping.from_dict_list(json_obj, A)
    d_l_obj = objtyping.to_dict_list(typed_obj)
    print(json.dumps(d_l_obj))

    sys.exit()

输出结果

-----json-------
{"q": "9", "a": "Mark", "b": 3, "c": [{"x": 15, "y": "male"}, {"x": 9, "y": "female", "z": 13}]}

这里需要注意的是:本来属性"q",在最初的json结构中,是个数字,但由于类变量定义中是字符串,转换成业务对象以后,它的类型就是字符串了——objtyping工具,会试图按照类定义,在基础类型之间强制转换。

yaml

示例

import sys
from ruamel.yaml import YAML
from typing import List
from objtyping import objtyping


class X:
    x: int
    y: str


class A:
    q: str
    a: str
    b: int
    c: List[X]


if __name__ == '__main__':
    print("\r\n-----yaml-------")
    yaml = YAML()
    yaml_obj = yaml.load('''
    q: 9
    a: Mark
    b: 3
    c:
        - x: 15
          y: male
        - x: 9
          y: female
          z: 13    
    ''')
    typed_obj = objtyping.from_dict_list(yaml_obj, A)
    d_l_obj = objtyping.to_dict_list(typed_obj)
    yaml.dump(d_l_obj, sys.stdout)

    sys.exit()

输出结果

-----yaml-------
q: '9'
a: Mark
b: 3
c:
- x: 15
  y: male
- x: 9
  y: female
  z: 13

这里的属性"q"同样被强转了类型。

Owner
Song Hui
Song Hui
a demo show how to dump lldb info to ida.

用一个demo来聊聊动态trace 这个仓库能做什么? 帮助理解动态trace的思想。仓库内的demo,可操作,可实践。 动态trace核心思想: 动态记录一个函数内每一条指令的执行中产生的信息,并导入IDA,用来弥补IDA等静态分析工具的不足。 反编译看一下 先clone仓库,把hellolldb

25 Nov 28, 2022
Library for processing molecules and reactions in python way

Chython [ˈkʌɪθ(ə)n] Library for processing molecules and reactions in python way. Features: Read/write/convert formats: MDL .RDF (.RXN) and .SDF (.MOL

16 Dec 01, 2022
A simple tool to extract python code from a Jupyter notebook, and then run pylint on it for static analysis.

Jupyter Pylinter A simple tool to extract python code from a Jupyter notebook, and then run pylint on it for static analysis. If you find this tool us

Edmund Goodman 10 Oct 13, 2022
Aurin - A quick AUR installer for Arch Linux. Install packages from AUR website in a click.

Aurin - A quick AUR installer for Arch Linux. Install packages from AUR website in a click.

Suleman 51 Nov 04, 2022
Script to autocompound 3commas BO:SO based on user provided risk factor

3commas_compounder Script to autocompound 3commas BO:SO based on user provided risk factor Setup Step 1 git clone this repo into your working director

0 Feb 24, 2022
Shypan, a simple, easy to use, full-featured library written in Python.

Shypan, a simple, easy to use, full-featured library written in Python.

ShypanLib 4 Dec 08, 2021
jfc is an utility to make reviewing ArXiv papers for your Journal Club easier.

jfc is an utility to make reviewing ArXiv papers for your Journal Club easier.

Miguel M. 3 Dec 20, 2021
Python code to divide big numbers

divide-big-num Python code to divide big numbers

VuMinhNgoc 1 Oct 15, 2021
Playing with python imports and inducing those pesky errors.

super-duper-python-imports In this repository we are playing with python imports and inducing those pesky ImportErrors. File Organization project │

James Kelsey 2 Oct 14, 2021
This utility lets you draw using your laptop's touchpad on Linux.

FingerPaint This utility lets you draw using your laptop's touchpad on Linux. Pressing any key or clicking the touchpad will finish the drawing

Wazzaps 95 Dec 17, 2022
A collection of resources/tools and analyses for the angr binary analysis framework.

Awesome angr A collection of resources/tools and analyses for the angr binary analysis framework. This page does not only collect links and external r

105 Jan 02, 2023
A script to check for common mistakes in LaTeX source files of scientific papers.

LaTeX Paper Linter This script checks for common mistakes in LaTeX source files of scientific papers. Usage python3 paperlint.py file.tex [-i/x inc

Michael Schwarz 12 Nov 16, 2022
A thing to simplify listening for PG notifications with asyncpg

asyncpg-listen This library simplifies usage of listen/notify with asyncpg: Handles loss of a connection Simplifies notifications processing from mult

ANNA 18 Dec 23, 2022
general-phylomoji: a phylogenetic tree of emoji

general-phylomoji: a phylogenetic tree of emoji

2 Dec 11, 2021
Simple web index to use bloom filter for Pwned Passwords

pwbloom Simple web index to use bloom filter for Pwned Passwords The index.py runs a simple CGI web service checking passwords with a bloom filter for

Hanno Böck 4 Nov 23, 2021
ColorController is a Pythonic interface for managing colors by english-language name and various color values.

ColorController.py Table of Contents Encode color data in various formats. 1.1: Create a ColorController object using a familiar, english-language col

Tal Zaken 2 Feb 12, 2022
Obsidian tools - a Python package for analysing an Obsidian.md vault

obsidiantools is a Python package for getting structured metadata about your Obsidian.md notes and analysing your vault.

Mark Farragher 153 Jan 04, 2023
Factoral Methods using two different method

Factoral-Methods-using-two-different-method Here, I am finding the factorial of a number by using two different method. The first method is by using f

Sachin Vinayak Dabhade 4 Sep 24, 2021
A module for account creation with python

A module for account creation with python

Fayas Noushad 3 Dec 01, 2021
Just some scripts to export vector tiles to geojson.

Vector tiles to GeoJSON Nowadays modern web maps are usually based on vector tiles. The great thing about vector tiles is, that they are not just imag

Lilith Wittmann 77 Jul 26, 2022