Productivity Tools for Plotly + Pandas

Overview

Cufflinks

This library binds the power of plotly with the flexibility of pandas for easy plotting.

This library is available on https://github.com/santosjorge/cufflinks

This tutorial assumes that the plotly user credentials have already been configured as stated on the getting started guide.

Tutorials:

3D Charts

Release Notes

v0.17.0

Support for Plotly 4.x
Cufflinks is no longer compatible with Plotly 3.x

v0.14.0

Support for Plotly 3.0

v0.13.0

New iplot helper. To see a comprehensive list of parameters cf.help()

# For a list of supported figures
cf.help()
# Or to see the parameters supported that apply to a given figure try
cf.help('scatter')
cf.help('candle') #etc

v0.12.0

Removed dependecies on ta-lib. This library is no longer required. All studies have be rewritten in Python.

v0.11.0

  • QuantFigure is a new class that will generate a graph object with persistence. Parameters can be added/modified at any given point.

This can be as easy as:

df=cf.datagen.ohlc()
qf=cf.QuantFig(df,title='First Quant Figure',legend='top',name='GS')
qf.add_bollinger_bands()
qf.iplot()

QuantFigure

  • Technical Analysis Studies can be added on demand.
qf.add_sma([10,20],width=2,color=['green','lightgreen'],legendgroup=True)
qf.add_rsi(periods=20,color='java')
qf.add_bollinger_bands(periods=20,boll_std=2,colors=['magenta','grey'],fill=True)
qf.add_volume()
qf.add_macd()
qf.iplot()

Technical Analysis

v0.10.0

  • rangeslider to display a date range slider at the bottom
    • cf.datagen.ohlc().iplot(kind='candle',rangeslider=True)
  • rangeselector to display buttons to change the date range displayed
    • cf.datagen.ohlc(500).iplot(kind='candle', rangeselector={ 'steps':['1y','2 months','5 weeks','ytd','2mtd','reset'], 'bgcolor' : ('grey',.3), 'x': 0.3 , 'y' : 0.95})
  • Customise annotions, with fontsize,fontcolor,textangle
    • Label mode
      • cf.datagen.lines(1,mode='stocks').iplot(kind='line', annotations={'2015-02-02':'Market Crash', '2015-03-01':'Recovery'}, textangle=-70,fontsize=13,fontcolor='grey')
    • Explicit mode
      • cf.datagen.lines(1,mode='stocks').iplot(kind='line', annotations=[{'text':'exactly here','x':'0.2', 'xref':'paper','arrowhead':2, 'textangle':-10,'ay':150,'arrowcolor':'red'}])

v0.9.0

  • Figure.iplot() to plot figures
  • New high performing candle and ohlc plots
    • cf.datagen.ohlc().iplot(kind='candle')

v0.8.0

  • 'cf.datagen.choropleth()' to for sample choropleth data.
  • 'cf.datagen.scattergeo()' to for sample scattergeo data.
  • Support for choropleth and scattergeo figures in iplot
  • 'cf.get_colorscale' for maps and plotly objects that support colorscales

v0.7.1

  • xrange, yrange and zrange can be specified in iplot and getLayout
    • cf.datagen.lines(1).iplot(yrange=[5,15])
  • layout_update can be set in iplot and getLayout to explicitly update any Layout value

v0.7

  • Support for Python 3

v0.6

See the IPython Notebook

  • Support for pie charts
    • cf.datagen.pie().iplot(kind='pie',labels='labels',values='values')
  • Generate Open, High, Low, Close data
    • datagen.ohlc()
  • Candle Charts support
    • ohlc=cf.datagen.ohlc()
      ohlc.iplot(kind='candle',up_color='blue',down_color='red')
  • OHLC (Bar) Charts support
    • ohlc=cf.datagen.ohlc()
      ohlc.iplot(kind='ohlc',up_color='blue',down_color='red')
  • Support for logarithmic charts ( logx | logy )
    • df=pd.DataFrame([x**2] for x in range(100))
      df.iplot(kind='lines',logy=True)
  • Support for MulitIndex DataFrames
  • Support for Error Bars ( error_x | error_y )
    • cf.datagen.lines(1,5).iplot(kind='bar',error_y=[1,2,3.5,2,2])
    • cf.datagen.lines(1,5).iplot(kind='bar',error_y=20, error_type='percent')
  • Support for continuous error bars
    • cf.datagen.lines(1).iplot(kind='lines',error_y=20,error_type='continuous_percent')
    • cf.datagen.lines(1).iplot(kind='lines',error_y=10,error_type='continuous',color='blue')
  • Technical Analysis Studies for Timeseries (beta)
    • Simple Moving Averages (SMA)
      • cf.datagen.lines(1,500).ta_plot(study='sma',periods=[13,21,55])
    • Relative Strength Indicator (RSI)
      • cf.datagen.lines(1,200).ta_plot(study='boll',periods=14)
    • Bollinger Bands (BOLL)
      • cf.datagen.lines(1,200).ta_plot(study='rsi',periods=14)
    • Moving Average Convergence Divergence (MACD)
      • cf.datagen.lines(1,200).ta_plot(study='macd',fast_period=12,slow_period=26, signal_period=9)

v0.5

  • Support of offline charts
    • cf.go_offline()
    • cf.go_online()
    • cf.iplot(figure,online=True) (To force online whilst on offline mode)
  • Support for secondary axis
    • fig=cf.datagen.lines(3,columns=['a','b','c']).figure()
      fig=fig.set_axis('b',side='right')
      cf.iplot(fig)

v0.4

  • Support for global theme setting
    • cufflinks.set_config_file(theme='pearl')
  • New theme ggplot
    • cufflinks.datagen.lines(5).iplot(theme='ggplot')
  • Support for horizontal bar charts barh
    • cufflinks.datagen.lines(2).iplot(kind='barh',barmode='stack',bargap=.1)
  • Support for histogram orientation and normalization
    • cufflinks.datagen.histogram().iplot(kind='histogram',orientation='h',norm='probability')
  • Support for area plots
    • cufflinks.datagen.lines(4).iplot(kind='area',fill=True,opacity=1)
  • Support for subplots
    • cufflinks.datagen.histogram(4).iplot(kind='histogram',subplots=True,bins=50)
    • cufflinks.datagen.lines(4).iplot(subplots=True,shape=(4,1),shared_xaxes=True,vertical_spacing=.02,fill=True)
  • Support for scatter matrix to display the distribution amongst every series in the DataFrame
    • cufflinks.datagen.lines(4,1000).scatter_matrix()
  • Support for vline and hline for horizontal and vertical lines
    • cufflinks.datagen.lines(3).iplot(hline=[2,3])
    • cufflinks.datagen.lines(3).iplot(hline=dict(y=2,color='blue',width=3))
  • Support for vspan and hspan for horizontal and vertical areas
    • cufflinks.datagen.lines(3).iplot(hspan=(-1,2))
    • cufflinks.datagen.lines(3).iplot(hspan=dict(y0=-1,y1=2,color='orange',fill=True,opacity=.4))

v0.3.2

  • Global setting for public charts
    • cufflinks.set_config_file(world_readable=True)

v0.3

  • Enhanced Spread charts
    • cufflinks.datagen.lines(2).iplot(kind='spread')
  • Support for Heatmap charts
    • cufflinks.datagen.heatmap().iplot(kind='heatmap')
  • Support for Bubble charts
    • cufflinks.datagen.bubble(4).iplot(kind='bubble',x='x',y='y',text='text',size='size',categories='categories')
  • Support for Bubble3d charts
    • cufflinks.datagen.bubble3d(4).iplot(kind='bubble3d',x='x',y='y',z='z',text='text',size='size',categories='categories')
  • Support for Box charts
    • cufflinks.datagen.box().iplot(kind='box')
  • Support for Surface charts
    • cufflinks.datagen.surface().iplot(kind='surface')
  • Support for Scatter3d charts
    • cufflinks.datagen.scatter3d().iplot(kind='scatter3d',x='x',y='y',z='z',text='text',categories='categories')
  • Support for Histograms
    • cufflinks.datagen.histogram(2).iplot(kind='histogram')
  • Data generation for most common plot types
    • cufflinks.datagen
  • Data extraction: Extract data from any Plotly chart. Data is delivered in DataFrame
    • cufflinks.to_df(Figure)
  • Integration with colorlover
    • Support for scales iplot(colorscale='accent') to plot a chart using an accent color scale
    • cufflinks.scales() to see all available scales
  • Support for named colors * iplot(colors=['pink','red','yellow'])
Owner
Jorge Santos
Jorge Santos
Sci palettes for matplotlib/seaborn

sci palettes for matplotlib/seaborn Installation python3 -m pip install sci-palettes Usage import seaborn as sns import matplotlib.pyplot as plt impor

Qingdong Su 2 Jun 07, 2022
A minimalistic wrapper around PyOpenGL to save development time

glpy glpy is pyOpenGl wrapper which lets you work with pyOpenGl easily.It is not meant to be a replacement for pyOpenGl but runs on top of pyOpenGl to

Abhinav 9 Apr 02, 2022
This project is created to visualize the system statistics such as memory usage, CPU usage, memory accessible by process and much more using Kibana Dashboard with Elasticsearch.

System Stats Visualizer This project is created to visualize the system statistics such as memory usage, CPU usage, memory accessible by process and m

Vishal Teotia 5 Feb 06, 2022
Small project demonstrating the use of Grafana and InfluxDB for monitoring the speed of an internet connection

Speedtest monitor for Grafana A small project that allows internet speed monitoring using Grafana, InfluxDB 2 and Speedtest. Demo Requirements Docker

Joshua Ghali 3 Aug 06, 2021
A small timeseries transformation API built on Flask and Pandas

#Mcflyin ###A timeseries transformation API built on Pandas and Flask This is a small demo of an API to do timeseries transformations built on Flask a

Rob Story 84 Mar 25, 2022
A guide for using Bootstrap 5 classes in Dash Bootstrap Components V1

dash-bootstrap-cheatsheet This handy interactive cheatsheet makes it easy to use the Bootstrap 5 classes with your Dash app made with the latest versi

10 Dec 22, 2022
Interactive chemical viewer for 2D structures of small molecules

👀 mols2grid mols2grid is an interactive chemical viewer for 2D structures of small molecules, based on RDKit. ➡️ Try the demo notebook on Google Cola

Cédric Bouysset 154 Dec 26, 2022
3D plotting and mesh analysis through a streamlined interface for the Visualization Toolkit (VTK)

PyVista Deployment Build Status Metrics Citation License Community 3D plotting and mesh analysis through a streamlined interface for the Visualization

PyVista 1.6k Jan 08, 2023
Drug design and development team HackBio internship is a virtual bioinformatics program that introduces students and professional to advanced practical bioinformatics and its applications globally.

-Nyokong. Drug design and development team HackBio internship is a virtual bioinformatics program that introduces students and professional to advance

4 Aug 04, 2022
Lightweight data validation and adaptation Python library.

Valideer Lightweight data validation and adaptation library for Python. At a Glance: Supports both validation (check if a value is valid) and adaptati

Podio 258 Nov 22, 2022
Mapomatic - Automatic mapping of compiled circuits to low-noise sub-graphs

mapomatic Automatic mapping of compiled circuits to low-noise sub-graphs Overvie

Qiskit Partners 27 Nov 06, 2022
A Python Binder that merge 2 files with any extension by creating a new python file and compiling it to exe which runs both payloads.

Update ! ANONFILE MIGHT NOT WORK ! About A Python Binder that merge 2 files with any extension by creating a new python file and compiling it to exe w

Vesper 15 Oct 12, 2022
Draw interactive NetworkX graphs with Altair

nx_altair Draw NetworkX graphs with Altair nx_altair offers a similar draw API to NetworkX but returns Altair Charts instead. If you'd like to contrib

Zachary Sailer 206 Dec 12, 2022
Python package that generates hardware pinout diagrams as SVG images

PinOut A Python package that generates hardware pinout diagrams as SVG images. The package is designed to be quite flexible and works well for general

336 Dec 20, 2022
A simple code for plotting figure, colorbar, and cropping with python

Python Plotting Tools This repository provides a python code to generate figures (e.g., curves and barcharts) that can be used in the paper to show th

Guanying Chen 134 Jan 02, 2023
Data Visualizations for the #30DayChartChallenge

The #30DayChartChallenge This repository contains all the charts made for the #30DayChartChallenge during the month of April. This project aims to exp

Isaac Arroyo 7 Sep 20, 2022
Pglive - Pglive package adds support for thread-safe live plotting to pyqtgraph

Live pyqtgraph plot Pglive package adds support for thread-safe live plotting to

Martin Domaracký 15 Dec 10, 2022
A deceptively simple plotting library for Streamlit

🍅 Plost A deceptively simple plotting library for Streamlit. Because you've been writing plots wrong all this time. Getting started pip install plost

Thiago Teixeira 192 Dec 29, 2022
Matplotlib colormaps from the yt project !

cmyt Matplotlib colormaps from the yt project ! Colormaps overview The following colormaps, as well as their respective reversed (*_r) versions are av

The yt project 5 Sep 16, 2022
Minimalistic tool to visualize how the routes to a given target domain change over time, feat. Python 3.10 & mermaid.js

Minimalistic tool to visualize how the routes to a given target domain change over time, feat. Python 3.10 & mermaid.js

Péter Ferenc Gyarmati 1 Jan 17, 2022