Implementation of the Angular Spectrum method in Python to simulate Diffraction Patterns

Overview

Diffraction Simulations - Angular Spectrum Method

Implementation of the Angular Spectrum method in Python to simulate Diffraction Patterns with arbitrary apertures. You can use it for simulating both monochromatic and polychromatic light also with arbitrary spectrums.

How the method and the simulator work is described in this Article. Take a look to the Youtube video to see the animated simulations!

animation

Installation

  1. Clone repository
  2. Install requirements via pip install -r requirements.txt

Examples

To perform the simulations, just run from the folder proyect in the command prompt the corresponding Python scripts:

python hexagon_monochromatic.py

N|Solid

python hexagon_polychromatic.py

N|Solid

python rectangular_grating_small.py

N|Solid

python rectangular_grating.py

N|Solid

python circular_rings.py

N|Solid

python text.py

N|Solid

Comments
  • Possibility of Phase-Object Diffraction Simulation

    Possibility of Phase-Object Diffraction Simulation

    Hi! Thanks for your really amazing work! I am a newbie in optics and I am wondering whether it's possible to produce diffraction like image And here is the light field with the description from the paper

    A laser beam emitted from a He–Ne laser at a wavelength of 632.8 nm (NEC Electronics Inc. GLG5002) was first spatially filtered by a pinhole with an aperture of 10 µm and then collimated by a lens with a focal length of f= 200mm. The plane wave was guided to illuminate a phase object, producing intensity images as shown in Fig. 5b. To acquire the diffraction pattern, we placed the camera (SensiCam EM, pixel pitch: 8 µm) at a distance d= 22.3mm from the phase object.

    image

    Appreciate it a lot if you could help me about this:) Wish you a good day!

    opened by FishWoWater 8
  • Is it possible to modulate the initial MonochromaticField?

    Is it possible to modulate the initial MonochromaticField?

    Thank you for creating such a useful tool. In my recent research, I need a plane wave only whose intensity is modulated, but I can't achieve this effect with MonochromaticField and Could you tell me how to implement this function?

    opened by Windaway 5
  • plot_intensity() and plot_colors() show different results

    plot_intensity() and plot_colors() show different results

    Hi,

    firstly I would like to thank you for this nice package. However, I am experiencing some trouble with the visualisation functions. Below, you can find the example "circular_aperture_lens.py" with two added lines of code. It seems to me that the functions plot_intensity() and plot_colors() show different results, which is somehow confusing. Is this a bug or did I use the functions not as intended?

    import diffractsim
    diffractsim.set_backend("CPU") #Change the string to "CUDA" to use GPU acceleration
    
    from diffractsim import MonochromaticField, nm, mm, cm, CircularAperture, Lens
    
    F = MonochromaticField(
        wavelength = 543 * nm, extent_x=13. * mm, extent_y=13. * mm, Nx=2000, Ny=2000, intensity =0.01
    )
    
    F.add(CircularAperture(radius = 0.7*mm))
    F.propagate(100*cm)
    F.add(Lens(f = 100*cm)) # Just remove this command to see the pattern without lens
    F.propagate(100*cm)
    
    rgb = F.get_colors()
    F.plot_colors(rgb, xlim=[-3*mm,3*mm], ylim=[-3*mm,3*mm])
    F.plot_intensity(F.get_intensity(), xlim=[-3*mm,3*mm], ylim=[-3*mm,3*mm])
    
    opened by CakeUser321 3
  • NX and NY definition?

    NX and NY definition?

    Hi! Could you explain me what are NX and NY in MonochromaticField and PolychromaticField? What are they correlation with extent_x and extent_y visually? I would like to simulate diffraction pattern of a grating 20 cm in front of a telescope (F=11 m, D=60 cm) at its focal plane. Do you have some suggestions? Thank you in advance.

    opened by irfanimaduddin 3
  • How should handle the circular convolution and the linear convolution in the angular spectrum method?

    How should handle the circular convolution and the linear convolution in the angular spectrum method?

    Hi, there. Firstly, thank you for your great job for the fresh men like me! It's really helpful! So here is the thing, I read the angular spectrum method part to implement the wave propagation, and I noticed you just used two fft2s and ifft. So this is a circular convolution, right? I am wondering what should we choose between circular convolution and linear convolution? Thanks in advance!

    opened by nophy 2
  • Running rectangular slit with CPU

    Running rectangular slit with CPU

    Running rectangular slit with CPU gives me the following error- AttributeError: 'RectangularSlit' object has no attribute 'xx'

    rectangular_slit.zip

    [I have attached the code I'm running] complete traceback-

    Traceback (most recent call last):

    File "", line 1, in runfile('C:/Users/acer/Desktop/python-sonu/programms/rectangular_slit.py', wdir='C:/Users/acer/Desktop/python-sonu/programms')

    File "C:\Users\acer\Anaconda3\lib\site-packages\spyder\utils\site\sitecustomize.py", line 705, in runfile execfile(filename, namespace)

    File "C:\Users\acer\Anaconda3\lib\site-packages\spyder\utils\site\sitecustomize.py", line 102, in execfile exec(compile(f.read(), filename, 'exec'), namespace)

    File "C:/Users/acer/Desktop/python-sonu/programms/rectangular_slit.py", line 15, in F.add(RectangularSlit(width= 1mm, height=5cm,x0=0,y0=0))

    File "C:\Users\acer\Anaconda3\lib\site-packages\diffractsim\monochromatic_simulator.py", line 51, in add self.E = optical_element.get_E(self.E, self.xx, self.yy, self.λ)

    File "C:\Users\acer\Anaconda3\lib\site-packages\diffractsim\diffractive_elements\diffractive_element.py", line 18, in get_E return E*self.get_transmittance(xx, yy, λ)

    File "C:\Users\acer\Anaconda3\lib\site-packages\diffractsim\diffractive_elements\rectangular_slit.py", line 25, in get_transmittance bd.ones_like(self.xx), bd.zeros_like(self.xx))

    AttributeError: 'RectangularSlit' object has no attribute 'xx rectangular_slit.zip '

    opened by Abhisek1300 2
  • How to simulate Fourier Transform at the Focal Plane (when input_distance = f)

    How to simulate Fourier Transform at the Focal Plane (when input_distance = f)

    Hi, Thank you for your fantastic work.

    I have implemented the lens system as given in this script. I also followed your article as well.

    When I set up input_distance = output_distance = focal_length= 25cm, Ideally I should get the Fourier Transform at the output. But the implementation does not give that. Could you please guide me on how I can get that?

    Input field (intensity) image

    What I got from the simulation (I checked for multiple scale factors in scale_propagation function (in this script). Below are images for scale_factor= 30) image

    What should I get (Fourier Transform) image image

    opened by udithhaputhanthri 1
  • Two visualization questions

    Two visualization questions

    I have two questions about visualization which are:

    1. I would like to get full longitudinal profile plot for a big lens (in 60 cm wide) but the plot_longitudinal_profile_colors function trimmed it on y axis. How could I deal with this kind of issue?
    2. Is there any code available to create an animation of intensity plots?

    Thanks, Irfan

    opened by irfanimaduddin 1
  • Rectangular Slit with CUDA

    Rectangular Slit with CUDA

    Running a rectungular slit with CUDA backend gives me the following error:

    Traceback (most recent call last): File "C:/Users/ethan/Documents/PycharmProjects/diffraction/examples/circular_aperture_lens.py", line 27, in F.add_rectangular_slit(x0=0, y0=0, width=1.5 * mm, height=1.5 * mm) File "C:\Users\ethan\Documents\PycharmProjects\diffraction\venv\lib\site-packages\diffractsim\monochromatic_simulator.py", line 68, in add_rectangular_slit [bd.ones(self.E.shape), bd.zeros(self.E.shape)], File "C:\Users\ethan\Documents\PycharmProjects\diffraction\venv\lib\site-packages\cupy_indexing\indexing.py", line 199, in select if cond.dtype.type is not cupy.bool_: AttributeError: 'bool' object has no attribute 'dtype'

    Can be fixed by modifying assignment if the 't' variable in the 'add_rectangular_slit' function.

    t = bd.select(
                [
                    ((self.xx > (x0 - width / 2)) & (self.xx < (x0 + width / 2)))
                    & ((self.yy > (y0 - height / 2)) & (self.yy < (y0 + height / 2))),
                    bd.full(self.E.shape, True, dtype=bool)
                ],
                [bd.ones(self.E.shape), bd.zeros(self.E.shape)],
            )
    
    opened by ethan-becker-fathom 1
  • Corrected errors in input+output plane coordinate systems and added lens example

    Corrected errors in input+output plane coordinate systems and added lens example

    There is a mistake in the coordinate system definitions of the current version which means that for example a lens does not focus exactly on the optical axis. If you try and run the supplied example in an old version of the code you would get:

    old_image old_PSF

    And with the new version you would instead get the following on-axis responses:

    new_image new_PSF

    P.S. I have also updated the calculation of kz in order to include non-propagating modes. If not, the supplied example will fail

    P.P.S. Changes only made to the monochromatic simulator

    opened by villadsegede 1
  • Refactor user and developer experience

    Refactor user and developer experience

    Hello @rafael-fuente, I really enjoyed your simulations! I am creating a pull request with features that will allow for easier user and developer experience when working with your project.

    opened by irahorecka 1
  • Code documentation

    Code documentation

    The description of the functions are clear but I had a hard time understanding how they worked. If you want, I can help you create even better documentation in code.

    opened by GuilhermeMonteiroPeixoto 0
  • Lens aberration function

    Lens aberration function

    I noticed that the lens aberration attribute was not being referenced correctly (missing self.). I also added the missing wavelength dependence and a simple example showing how it can be used.

    opened by danielbrown2 0
  • ApertureFromImage() seems to always assume the image is in linear sRGB

    ApertureFromImage() seems to always assume the image is in linear sRGB

    Hi,

    I think this tool you made is awesome, and I really enjoy playing with it. My only "complaint" is that when using a grayscale image as an aperture, the result at a dstance of 0 look different from the original image. I'm guessing that it's because F.get_colors() correctly converts the output image to sRGB, but when loading the aperture image with ApertureFromImage(), the image isn't correctly converted to linear.

    Editing the grayscale conversion in aperture_from_image.py this way seems to fix it: t = 0.2990 * np.power(imgRGB[:, :, 0],2.2) + 0.5870 * np.power(imgRGB[:, :, 1],2.2) + 0.1140 * np.power(imgRGB[:, :, 2],2.2)

    opened by stduhpf 0
  • Request for CPU multi core processing support

    Request for CPU multi core processing support

    First, like your work, and I would like to make it better.

    I would be nice to have support for multi-core processing. I know that numpy runs fast on the cpu but cannot use more then one core. Also not all computers can use well the gpu and installing and using cupy is not straight foreword and easy as numpy.

    On the side, there are module that able to use multi core for mathematical operation like numba. In addition, its installation is simple and it is easy to use.

    I would like to help with that and it seems that the change for the code would not be so big. Thanks

    opened by eitan-davis 0
Releases(v2.2.3)
  • v2.2.3(Feb 18, 2022)

    Diffractsim is a flexible and easy-to-use Python diffraction simulator that focuses on visualizing physical optics phenomena.

    The simulator provides scalar diffraction techniques for full-optical path propagation, an interface for simulation setup, and several plotting options, counting with CIE Color matching functions for accurate color reproduction.

    It supports lenses, phase hologram generation, and GPU acceleration.

    Source code(tar.gz)
    Source code(zip)
    diffractsim-2.2.3.zip(1.90 MB)
Owner
Rafael de la Fuente
Rafael de la Fuente
That is a example of a Book app on Python, made with support of all JS libraries on React framework

React+Python Books App You can use this repository whenever you want Used for a video Create the database: python -m dbutils Start the web server: pyt

Koma Human 1 Apr 20, 2022
Zapiski za ure o C++-u

cpp-notes Zapiski o C++-u. Objavljena verzija je na https://e6.ijs.si/~jslak/c++/ Generating the notes The setup assumes you are working in a Linux en

Jure Slak 1 Jan 05, 2022
This is a modified variation of abhiTronix's vidgear. In this variation, it is possible to write the output file anywhere regardless the permissions.

Info In order to download this package: Windows 10: Press Windows+S, Type PowerShell (cmd in older versions) and hit enter, Type pip install vidgear_n

Ege Akman 3 Jan 30, 2022
Python meta class and abstract method library with restrictions.

abcmeta Python meta class and abstract method library with restrictions. This library provides a restricted way to validate abstract methods. The Pyth

Morteza NourelahiAlamdari 8 Dec 14, 2022
Este software fornece interface gráfica para o escputil e tem por finalidade testar e fazer limpeza no cabeçote de impressão....

PrinterTools O que é PrinterTools? PrinterTools é uma ferramenta gráfica que usa o escputil para testar e fazer limpeza de cabeçote de impressão em si

Elizeu Barbosa Abreu 1 Dec 21, 2021
switching computer? changing your setup? You need to automate the download of your current setup? This is the right tool for you :incoming_envelope:

🔮 setup_shift(SS.py) switching computer? changing your setup? You need to automate the download of your current setup? This is the right tool for you

Mohamed Elfaleh 15 Aug 26, 2022
Python flexible slugify function

Python flexible slugify function

Dmitry Voronin 471 Dec 20, 2022
CNKD - Minimalistic Windows ransomware written in Python

CNKD Minimalistic Windows ransomware written in Python (Still a work in progress

Alex 2 May 27, 2022
Hello, Welcome to this repo. don't forget to read guidelines in readme.md

Hacktoberfest_2021 If you looking for your first contribution, we are here to help. Just create a simple program using any language you like in our fo

Wafa Rifqi Anafin 117 Dec 14, 2022
Яндекс тренировки по алгоритмам. Июнь 2021

Young&&Yandex Тренировки по алгоритмам Если вы хотите попасть на летнюю стажировку в Яндекс, но пока не уверены в своих силах, приходите на наши трени

Podlevskiy Viktor 6 Sep 03, 2021
Driving lessons made simpler. Custom scheduling API built with Python.

NOTE This is a mirror of a GitLab repository. Dryvo Dryvo is a unique solution for the driving lessons industry. Our aim is to save the teacher’s time

Adam Goldschmidt 595 Dec 05, 2022
Pre-1.0 door/chest sound injector for Minecraft

doorjector Pre-1.0 door/chest sound injector for Minecraft. While the game is running, doorjector hotswaps the new sounds for the old right before the

Sam 1 Nov 20, 2021
banking system with python, beginner friendly, preadvanced level

banking-system-python banking system with python, beginner friendly, preadvanced level Used topics Functions else/if/elif dicts methods parameters hol

Razi Falah 1 Feb 03, 2022
Project issue to website data transformation toolkit

braintransform Project issue to website data transformation toolkit. Introduction The purpose of these scripts is to be able to dynamically generate t

Brainhack 1 Nov 19, 2021
Allow you to create you own custom decentralize job management system.

ants Allow you to create you own custom decentralize job management system. Install $ git clone https://github.com/hvuhsg/ants.git Run monitor exampl

1 Feb 15, 2022
Battle-Ship - Python-console battle ship

Battle-Ship this SHOULD work in lenux(if i spelled it wrong spam issues till I fix it) the thing that maby wont work is where it clears the screen the

pl608 2 Jan 06, 2022
Sigma coding youtube - This is a collection of all the code that can be found on my YouTube channel Sigma Coding.

Sigma Coding Tutorials & Resources YouTube • Facebook Support Sigma Coding Patreon • GitHub Sponsor • Shop Amazon Table of Contents Overview Topics Re

Alex Reed 927 Jan 08, 2023
Create N Share is a No Code solution which gives users the ability to create any type of feature rich survey forms with ease.

create n share Note : The Project Scaffold will be pushed soon. Create N Share is a No Code solution which gives users the ability to create any type

Chiraag Kakar 11 Dec 03, 2022
Материалы для курса VK Углубленный Python, весна 2022

VK Углубленный Python, весна 2022 Материалы для курса VK Углубленный Python, весна 2022 Лекции и материалы (слайды, домашки, код с занятий) Введение,

10 Nov 02, 2022
Github dorking tool

gh-dork Supply a list of dorks and, optionally, one of the following: a user (-u) a file with a list of users (-uf) an organization (-org) a file with

Molly White 119 Dec 21, 2022