Release for Improved Denoising Diffusion Probabilistic Models

Overview

improved-diffusion

This is the codebase for Improved Denoising Diffusion Probabilistic Models.

Usage

This section of the README walks through how to train and sample from a model.

Installation

Clone this repository and navigate to it in your terminal. Then run:

pip install -e .

This should install the improved_diffusion python package that the scripts depend on.

Preparing Data

The training code reads images from a directory of image files. In the datasets folder, we have provided instructions/scripts for preparing these directories for ImageNet, LSUN bedrooms, and CIFAR-10.

For creating your own dataset, simply dump all of your images into a directory with ".jpg", ".jpeg", or ".png" extensions. If you wish to train a class-conditional model, name the files like "mylabel1_XXX.jpg", "mylabel2_YYY.jpg", etc., so that the data loader knows that "mylabel1" and "mylabel2" are the labels. Subdirectories will automatically be enumerated as well, so the images can be organized into a recursive structure (although the directory names will be ignored, and the underscore prefixes are used as names).

The images will automatically be scaled and center-cropped by the data-loading pipeline. Simply pass --data_dir path/to/images to the training script, and it will take care of the rest.

Training

To train your model, you should first decide some hyperparameters. We will split up our hyperparameters into three groups: model architecture, diffusion process, and training flags. Here are some reasonable defaults for a baseline:

MODEL_FLAGS="--image_size 64 --num_channels 128 --num_res_blocks 3"
DIFFUSION_FLAGS="--diffusion_steps 4000 --noise_schedule linear"
TRAIN_FLAGS="--lr 1e-4 --batch_size 128"

Here are some changes we experiment with, and how to set them in the flags:

  • Learned sigmas: add --learn_sigma True to MODEL_FLAGS
  • Cosine schedule: change --noise_schedule linear to --noise_schedule cosine
  • Reweighted VLB: add --use_kl True to DIFFUSION_FLAGS and add --schedule_sampler loss-second-moment to TRAIN_FLAGS.
  • Class-conditional: add --class_cond True to MODEL_FLAGS.

Once you have setup your hyper-parameters, you can run an experiment like so:

python scripts/image_train.py --data_dir path/to/images $MODEL_FLAGS $DIFFUSION_FLAGS $TRAIN_FLAGS

You may also want to train in a distributed manner. In this case, run the same command with mpiexec:

mpiexec -n $NUM_GPUS python scripts/image_train.py --data_dir path/to/images $MODEL_FLAGS $DIFFUSION_FLAGS $TRAIN_FLAGS

When training in a distributed manner, you must manually divide the --batch_size argument by the number of ranks. In lieu of distributed training, you may use --microbatch 16 (or --microbatch 1 in extreme memory-limited cases) to reduce memory usage.

The logs and saved models will be written to a logging directory determined by the OPENAI_LOGDIR environment variable. If it is not set, then a temporary directory will be created in /tmp.

Sampling

The above training script saves checkpoints to .pt files in the logging directory. These checkpoints will have names like ema_0.9999_200000.pt and model200000.pt. You will likely want to sample from the EMA models, since those produce much better samples.

Once you have a path to your model, you can generate a large batch of samples like so:

python scripts/image_sample.py --model_path /path/to/model.pt $MODEL_FLAGS $DIFFUSION_FLAGS

Again, this will save results to a logging directory. Samples are saved as a large npz file, where arr_0 in the file is a large batch of samples.

Just like for training, you can run image_sample.py through MPI to use multiple GPUs and machines.

You can change the number of sampling steps using the --timestep_respacing argument. For example, --timestep_respacing 250 uses 250 steps to sample. Passing --timestep_respacing ddim250 is similar, but uses the uniform stride from the DDIM paper rather than our stride.

To sample using DDIM, pass --use_ddim True.

Owner
OpenAI
OpenAI
NASH 2021 project... this may or may not end up working 🤷‍♂️

wavespace synthesiser this is my NASH 2021 project, which may or may not end up working 🤷‍♂️ what is going on? imagine you have a big folder of audio

Ben Hayes 12 May 17, 2022
This script provides LIVE feedback for On-The-Fly data collection with RELION

README This script provides LIVE feedback for On-The-Fly data collection with RELION (very useful to explore already processed datasets too!) Creating

cryoEM CNIO 6 Jul 14, 2022
Our product DrLeaf which not only makes the work easier but also reduces the effort and expenditure of the farmer to identify the disease and its treatment methods.

Our product DrLeaf which not only makes the work easier but also reduces the effort and expenditure of the farmer to identify the disease and its treatment methods. We have to upload the image of an

Aniruddha Jana 2 Feb 02, 2022
NeurIPS'19: Meta-Weight-Net: Learning an Explicit Mapping For Sample Weighting (Pytorch implementation for noisy labels).

Meta-Weight-Net NeurIPS'19: Meta-Weight-Net: Learning an Explicit Mapping For Sample Weighting (Official Pytorch implementation for noisy labels). The

243 Jan 03, 2023
Change your Windows background with this program safely & easily!

Background_Changer Table of Contents: About the Program Features Requirements Preview Credits Reach Me See Also About the Program: You can change your

Sina.f 0 Jul 14, 2022
Stack-overflow-import - Import arbitrary code from Stack Overflow as Python modules.

StackOverflow Importer Do you ever feel like all you’re doing is copy/pasting from Stack Overflow? Let’s take it one step further. from stackoverflow

Filip Haglund 3.7k Jan 08, 2023
Python requirements.txt Guesser

Python-Requirements-Guesser ⚠️ This is alpha quality software. Work in progress Attempt to guess requirements.txt modules versions based on Git histor

Jerome 9 May 24, 2022
A simple way to read and write LAPS passwords from linux.

A simple way to read and write LAPS passwords from linux. This script is a python setter/getter for property ms-Mcs-AdmPwd used by LAPS inspired by @s

Podalirius 36 Dec 09, 2022
YourX: URL Clusterer With Python

YourX | URL Clusterer Screenshots Instructions for running Install requirements

ARPSyndicate 1 Mar 11, 2022
The best way to learn Python is by practicing examples. The repository contains examples of basic concepts of Python. You are advised to take the references from these examples and try them on your own.

90_Python_Exercises_and_Challenges The best way to learn Python is by practicing examples. This repository contains the examples on basic and advance

Milaan Parmar / Милан пармар / _米兰 帕尔马 205 Jan 06, 2023
A jokes python module

Made with Python3 (C) @FayasNoushad Copyright permission under MIT License License - https://github.com/FayasNoushad/Jokes/blob/main/LICENSE Deploy

Fayas Noushad 3 Nov 28, 2021
Shopify Backend Developer Intern Challenge - Summer 2022

Shopify Backend Developer Intern The task is build an inventory tracking web application for a logistics company. The detailed task details can be fou

Meet Gandhi 11 Oct 08, 2022
Contains the code of my learning of Python OOP.

OOP Python This repository contains the code of my learning of Python OOP. All the code: is following PEP 8 ✅ has proper concept illustrations and com

Samyak Jain 2 Jan 15, 2022
This is a spamming selfbot that has custom spammed message and @everyone spam.

This is a spamming selfbot that has custom spammed message and @everyone spam.

astro1212 1 Jul 31, 2022
A similarity measurer on two programming assignments on Online Judge.

A similarity measurer on two programming assignments on Online Judge. Algorithm implementation details are at here. Install Recommend OS: Ubuntu 20.04

StardustDL 6 May 21, 2022
Repositório de código de curso de Djavue ministrado na Python Brasil 2021

djavue-python-brasil Repositório de código de curso de Djavue ministrado na Python Brasil 2021 Completamente baseado no curso Djavue. A diferença está

Buser 15 Dec 26, 2022
Nextstrain build targeted to Omicron

About This repository analyzes viral genomes using Nextstrain to understand how SARS-CoV-2, the virus that is responsible for the COVID-19 pandemic, e

Bedford Lab 9 May 25, 2022
In the works, creating a new Chess Board and way to Play...

sWJz4Chess date started on github.com 11-13-2021 In the works, creating a new Chess Board and way to Play... starting to write this in Pygame, any ind

Shawn 2 Nov 18, 2021
Paxos in Python, tested with Jepsen

Python implementation of Multi-Paxos with a stable leader and reconfiguration, roughly following "Paxos Made Moderately Complex". Run python3 paxos/st

A. Jesse Jiryu Davis 25 Dec 15, 2022
A script for creating battle animations in FEGBA format.

AA2 Made by Huichelaar. I heavily referenced FEBuilderGBA. I also referenced circleseverywhere's Animation Assembler. This is also where I took lzss.p

2 May 31, 2022