Release for Improved Denoising Diffusion Probabilistic Models

Overview

improved-diffusion

This is the codebase for Improved Denoising Diffusion Probabilistic Models.

Usage

This section of the README walks through how to train and sample from a model.

Installation

Clone this repository and navigate to it in your terminal. Then run:

pip install -e .

This should install the improved_diffusion python package that the scripts depend on.

Preparing Data

The training code reads images from a directory of image files. In the datasets folder, we have provided instructions/scripts for preparing these directories for ImageNet, LSUN bedrooms, and CIFAR-10.

For creating your own dataset, simply dump all of your images into a directory with ".jpg", ".jpeg", or ".png" extensions. If you wish to train a class-conditional model, name the files like "mylabel1_XXX.jpg", "mylabel2_YYY.jpg", etc., so that the data loader knows that "mylabel1" and "mylabel2" are the labels. Subdirectories will automatically be enumerated as well, so the images can be organized into a recursive structure (although the directory names will be ignored, and the underscore prefixes are used as names).

The images will automatically be scaled and center-cropped by the data-loading pipeline. Simply pass --data_dir path/to/images to the training script, and it will take care of the rest.

Training

To train your model, you should first decide some hyperparameters. We will split up our hyperparameters into three groups: model architecture, diffusion process, and training flags. Here are some reasonable defaults for a baseline:

MODEL_FLAGS="--image_size 64 --num_channels 128 --num_res_blocks 3"
DIFFUSION_FLAGS="--diffusion_steps 4000 --noise_schedule linear"
TRAIN_FLAGS="--lr 1e-4 --batch_size 128"

Here are some changes we experiment with, and how to set them in the flags:

  • Learned sigmas: add --learn_sigma True to MODEL_FLAGS
  • Cosine schedule: change --noise_schedule linear to --noise_schedule cosine
  • Reweighted VLB: add --use_kl True to DIFFUSION_FLAGS and add --schedule_sampler loss-second-moment to TRAIN_FLAGS.
  • Class-conditional: add --class_cond True to MODEL_FLAGS.

Once you have setup your hyper-parameters, you can run an experiment like so:

python scripts/image_train.py --data_dir path/to/images $MODEL_FLAGS $DIFFUSION_FLAGS $TRAIN_FLAGS

You may also want to train in a distributed manner. In this case, run the same command with mpiexec:

mpiexec -n $NUM_GPUS python scripts/image_train.py --data_dir path/to/images $MODEL_FLAGS $DIFFUSION_FLAGS $TRAIN_FLAGS

When training in a distributed manner, you must manually divide the --batch_size argument by the number of ranks. In lieu of distributed training, you may use --microbatch 16 (or --microbatch 1 in extreme memory-limited cases) to reduce memory usage.

The logs and saved models will be written to a logging directory determined by the OPENAI_LOGDIR environment variable. If it is not set, then a temporary directory will be created in /tmp.

Sampling

The above training script saves checkpoints to .pt files in the logging directory. These checkpoints will have names like ema_0.9999_200000.pt and model200000.pt. You will likely want to sample from the EMA models, since those produce much better samples.

Once you have a path to your model, you can generate a large batch of samples like so:

python scripts/image_sample.py --model_path /path/to/model.pt $MODEL_FLAGS $DIFFUSION_FLAGS

Again, this will save results to a logging directory. Samples are saved as a large npz file, where arr_0 in the file is a large batch of samples.

Just like for training, you can run image_sample.py through MPI to use multiple GPUs and machines.

You can change the number of sampling steps using the --timestep_respacing argument. For example, --timestep_respacing 250 uses 250 steps to sample. Passing --timestep_respacing ddim250 is similar, but uses the uniform stride from the DDIM paper rather than our stride.

To sample using DDIM, pass --use_ddim True.

Owner
OpenAI
OpenAI
🛠️ Learn a technology X by doing a project - Search engine of project-based learning

Learn X by doing Y 🛠️ Learn a technology X by doing a project Y Website You can contribute by adding projects to the CSV file.

William 408 Dec 20, 2022
Reload all Blender add-on modules

Reload-Addon This add-on creates a list of the modules that the add-on selected in the drop-down menu contains and reloads them with the keyboard shor

2 Dec 02, 2021
Manjaro CN Repository

Manjaro CN Repository Automatically built packages based on archlinuxcn/repo and manjarocn/docker. Install Add manjarocn to /etc/pacman.conf: Please m

Manjaro CN 28 Jun 26, 2022
A python trivium implemention

A python trivium implemention

tnt2402 1 Nov 12, 2021
Expense Tracker is a very good tool to keep track of your expenseditures and the total money you saved.

Expense Tracker is a very good tool to keep track of your expenseditures and the total money you saved.

Shreejan Dolai 9 Dec 31, 2022
A rough GSL work DynSAGE of my graduation project

DynSAGE Codes w.r.t DynSAGE-Diffuse can be found in function apply_dyn_model_v2 of src/utils.py. The training entrance is Line 144 - 155 of src/main.p

Yuhan Wang 3 Mar 22, 2022
This collection is to provide an easier way to interact with Juniper

Ansible Collection - cremsburg.apstra Overview The goal of this collection is to provide an easier way to interact with Juniper's Apstra solution. Whi

Calvin Remsburg 1 Jan 18, 2022
CarolinaCon CTF Online

CarolinaCon Online CTF CTF challenges from CarolinaCon Online April 23 through April 25, 2021. All challenges from the CTF will eventually be here. Co

49th Security Division 6 May 04, 2022
A simple but complete exercise to learning Python

ResourceReservationProject This is a simple but complete exercise to learning Python. Task and flow chart We are going to do a new fork of the existin

2 Nov 14, 2022
Бэкапалка таблиц mysql 8 через брокер сообщений nats

nats-mysql-tables-backup Бэкап таблиц mysql 8 через брокер сообщений nats (проверено и работает в ubuntu 20.04, при наличии python 3.8) ПРИМЕРЫ: Ниже

Constantine 1 Dec 13, 2021
This repository contains Python Projects for Beginners as well as for Intermediate Developers built by Contributors.

Python Projects {Open Source} Introduction The repository was built with a tree-like structure in mind, it contains collections of Python Projects. Mo

Gaurav Pandey 115 Apr 30, 2022
Find out where all films you want to watch are streaming

Just Watch Letterboxd Find out where all films you want to watch are streaming Ever wonder what films you want to watch are already on the streaming p

Jordan Oslislo 2 Feb 04, 2022
Covid-19-Trends - A project that me and my friends created as the CSC110 Final Project at UofT

Covid-19-Trends Introduction The COVID-19 pandemic has caused severe financial s

1 Jan 07, 2022
Tool for running a high throughput data ingestion/transformation workload with MongoDB

Mongo Mangler The mongo-mangler tool is a lightweight Python utility, which you can run from a low-powered machine to execute a high throughput data i

Paul Done 9 Jan 02, 2023
Project Faros is a reference implimentation of Red Hat OpenShift 4 on small footprint, bare-metal clusters.

Project Faros Project Faros is a reference implimentation of Red Hat OpenShift 4 on small footprint, bare-metal clusters. The project includes referen

project: Faros 9 Jul 18, 2022
Research using python - Guide for development of research code (using Anaconda Python)

Guide for development of research code (using Anaconda Python) TL;DR: One time s

Ziv Yaniv 1 Feb 01, 2022
Slimbook Battery 4 is the new version with new features that improves battery control and increases battery duration in laptops.

Slimbookbattery Slimbook Battery 4 is the new version with new features that improves battery control and increases battery duration in laptops. This

SLIMBOOK TEAM 128 Dec 28, 2022
Object-oriented programming (OOP) is a method of structuring a program by bundling related properties and behaviors into individual objects. In this tutorial, you’ll learn the basics of object-oriented programming in Python.

06_Python_Object_Class Introduction 👋 Objected oriented programming as a discipline has gained a universal following among developers. Python, an in-

Milaan Parmar / Милан пармар / _米兰 帕尔马 239 Dec 20, 2022
Download and process GOES-16 and GOES-17 data from NOAA's archive on AWS using Python.

Download and display GOES-East and GOES-West data GOES-East and GOES-West satellite data are made available on Amazon Web Services through NOAA's Big

Brian Blaylock 88 Dec 16, 2022
DG - A(n) (unusual) programming language

DG - A(n) (unusual) programming language General structure There are no infix-operators (i.e. 1 + 1) Each operator takes 2 parameters When there are m

1 Mar 05, 2022