Release for Improved Denoising Diffusion Probabilistic Models

Overview

improved-diffusion

This is the codebase for Improved Denoising Diffusion Probabilistic Models.

Usage

This section of the README walks through how to train and sample from a model.

Installation

Clone this repository and navigate to it in your terminal. Then run:

pip install -e .

This should install the improved_diffusion python package that the scripts depend on.

Preparing Data

The training code reads images from a directory of image files. In the datasets folder, we have provided instructions/scripts for preparing these directories for ImageNet, LSUN bedrooms, and CIFAR-10.

For creating your own dataset, simply dump all of your images into a directory with ".jpg", ".jpeg", or ".png" extensions. If you wish to train a class-conditional model, name the files like "mylabel1_XXX.jpg", "mylabel2_YYY.jpg", etc., so that the data loader knows that "mylabel1" and "mylabel2" are the labels. Subdirectories will automatically be enumerated as well, so the images can be organized into a recursive structure (although the directory names will be ignored, and the underscore prefixes are used as names).

The images will automatically be scaled and center-cropped by the data-loading pipeline. Simply pass --data_dir path/to/images to the training script, and it will take care of the rest.

Training

To train your model, you should first decide some hyperparameters. We will split up our hyperparameters into three groups: model architecture, diffusion process, and training flags. Here are some reasonable defaults for a baseline:

MODEL_FLAGS="--image_size 64 --num_channels 128 --num_res_blocks 3"
DIFFUSION_FLAGS="--diffusion_steps 4000 --noise_schedule linear"
TRAIN_FLAGS="--lr 1e-4 --batch_size 128"

Here are some changes we experiment with, and how to set them in the flags:

  • Learned sigmas: add --learn_sigma True to MODEL_FLAGS
  • Cosine schedule: change --noise_schedule linear to --noise_schedule cosine
  • Reweighted VLB: add --use_kl True to DIFFUSION_FLAGS and add --schedule_sampler loss-second-moment to TRAIN_FLAGS.
  • Class-conditional: add --class_cond True to MODEL_FLAGS.

Once you have setup your hyper-parameters, you can run an experiment like so:

python scripts/image_train.py --data_dir path/to/images $MODEL_FLAGS $DIFFUSION_FLAGS $TRAIN_FLAGS

You may also want to train in a distributed manner. In this case, run the same command with mpiexec:

mpiexec -n $NUM_GPUS python scripts/image_train.py --data_dir path/to/images $MODEL_FLAGS $DIFFUSION_FLAGS $TRAIN_FLAGS

When training in a distributed manner, you must manually divide the --batch_size argument by the number of ranks. In lieu of distributed training, you may use --microbatch 16 (or --microbatch 1 in extreme memory-limited cases) to reduce memory usage.

The logs and saved models will be written to a logging directory determined by the OPENAI_LOGDIR environment variable. If it is not set, then a temporary directory will be created in /tmp.

Sampling

The above training script saves checkpoints to .pt files in the logging directory. These checkpoints will have names like ema_0.9999_200000.pt and model200000.pt. You will likely want to sample from the EMA models, since those produce much better samples.

Once you have a path to your model, you can generate a large batch of samples like so:

python scripts/image_sample.py --model_path /path/to/model.pt $MODEL_FLAGS $DIFFUSION_FLAGS

Again, this will save results to a logging directory. Samples are saved as a large npz file, where arr_0 in the file is a large batch of samples.

Just like for training, you can run image_sample.py through MPI to use multiple GPUs and machines.

You can change the number of sampling steps using the --timestep_respacing argument. For example, --timestep_respacing 250 uses 250 steps to sample. Passing --timestep_respacing ddim250 is similar, but uses the uniform stride from the DDIM paper rather than our stride.

To sample using DDIM, pass --use_ddim True.

Owner
OpenAI
OpenAI
This code can help you with auto update for-TV-advertisements in the store.

Auto-update-files-for-TV-advertisements-in-the-store This code can help you with auto update for-TV-advertisements in the store. It was write for Rasp

Max 2 Feb 20, 2022
Repo to store back end infrastructure for Message in a Bottle

Message in a Bottle Backend API RESTful API for Message in a Bottle frontend application consumption. About The Project • Tools Used • Local Set Up •

4 Dec 05, 2021
A project to explore and provide useful code for Mango Markets

🥭 Mango Explorer A project to explore and provide useful code for Mango Markets

Blockworks Foundation 160 Dec 19, 2022
Simple python bot, that notifies about new manga chapters through Telegram.

Simple python bot, that notifies about new manga chapters through Telegram.

Dmitry Kopturov 1 Dec 05, 2021
Demo content - Automate your automation!

Automate-AAP2 Demo Content - Automate your automation! A fully automated Ansible Automation Platform. Context Installing and configuring Ansible Autom

0 Oct 27, 2022
Tools for collecting social media data around focal events

Social Media Focal Events The focalevents codebase provides tools for organizing data collected around focal events on social media. It is often diffi

Ryan Gallagher 80 Nov 28, 2022
An Advanced Wordlist Library Written In Python For Acm114

RBAPG -RBAPG is the abbreviation of "Rule Based Attack Password Generator". -This module is a wordlist generator module. -You can generate randomly

Aziz Kaplan 11 Aug 28, 2022
Notes on the Deep Learning book from Ian Goodfellow, Yoshua Bengio and Aaron Courville (2016)

The Deep Learning Book - Goodfellow, I., Bengio, Y., and Courville, A. (2016) This content is part of a series following the chapter 2 on linear algeb

hadrienj 1.7k Jan 07, 2023
Generate PNG filles from NFO files.

Installation git clone https://github.com/pcroland/nfopng cd nfopng pip install -r requirements.txt Usage ❯ ./nfopng.py usage: nfopng.py [-h] [-v] [-i

4 Jun 26, 2022
simple password manager.

simple password manager.

1 Nov 18, 2021
A modern Python build backend

trampolim A modern Python build backend. Features Task system, allowing to run arbitrary Python code during the build process (Planned) Easy to use CL

Filipe Laíns 39 Nov 08, 2022
SMS-b0mber VANDALIZM developed for VK group

VANDALIZM SMS-b0mber VANDALIZM developed for VK group https://vk.com/dark__code if you come across this code, you can use it for your own purposes) ус

5 Jun 24, 2022
🌍💉 Global COVID-19 vaccination data at the regional level.

COVID-19 vaccination data at subnational level. To ensure its officiality, the source data is carefully verified.

sociepy 61 Sep 21, 2022
Heads Down Application for Mac OSX

Heads Down A Mac app that lives in your ribbon—with a click of the mouse, temporarily block distracting websites and applications to encourage "heads

20 Mar 10, 2021
Python most simple|stupid programming language (MSPL)

Most Simple|Stupid Programming language. (MSPL) Stack - Based programming language "written in Python" Features: Interpretate code (Run). Generate gra

Kirill Zhosul 14 Nov 03, 2022
Density is a open-sourced multi-purpose tool for ROBLOX with some cool

Density is a open-sourced multi-purpose tool for ROBLOX with some cool

ssl 5 Jul 16, 2022
JPMC Virtual Experience

This repository contains the submitted patch files along with raw files of the various tasks assigned by JPMorgan Chase & Co. through its Software Engineering Virtual Experience Program on Forage (fo

Vardhini K 1 Dec 05, 2021
Personal Finance Forecaster - An AI tool for forecasting personal expenses

Personal Finance Forecaster - An AI tool for forecasting personal expenses

2 Mar 09, 2022
A PG3D API Made with Python

PG3D Python API A Pixel Gun 3D Python API (Public Ver) Features Count: 29 How To Use? import api as pbn Examples pbn.isBanned(192819483) - True pbn.f

Karim 2 Mar 24, 2022
A tool for study using pomodoro methodology, while study mode spotify or any other .exe app is opened and while resting is closed.

Pomodoro-Timer-With-Spotify-Connection A tool for study using pomodoro methodology, while study mode spotify or any other .exe app is opened and while

2 Oct 23, 2022