Notes on the Deep Learning book from Ian Goodfellow, Yoshua Bengio and Aaron Courville (2016)

Overview

Cover of the deep learning book by Goodfellow, Bengio and Courville

The Deep Learning Book - Goodfellow, I., Bengio, Y., and Courville, A. (2016)

This content is part of a series following the chapter 2 on linear algebra from the Deep Learning Book by Goodfellow, I., Bengio, Y., and Courville, A. (2016). It aims to provide intuitions/drawings/python code on mathematical theories and is constructed as my understanding of these concepts.

Boost your data science skills. Learn linear algebra.

I'd like to introduce a series of blog posts and their corresponding Python Notebooks gathering notes on the Deep Learning Book from Ian Goodfellow, Yoshua Bengio, and Aaron Courville (2016). The aim of these notebooks is to help beginners/advanced beginners to grasp linear algebra concepts underlying deep learning and machine learning. Acquiring these skills can boost your ability to understand and apply various data science algorithms. In my opinion, it is one of the bedrock of machine learning, deep learning and data science.

These notes cover the chapter 2 on Linear Algebra. I liked this chapter because it gives a sense of what is most used in the domain of machine learning and deep learning. It is thus a great syllabus for anyone who wants to dive in deep learning and acquire the concepts of linear algebra useful to better understand deep learning algorithms.

You can find all the articles here.

Getting started with linear algebra

The goal of this series is to provide content for beginners who want to understand enough linear algebra to be confortable with machine learning and deep learning. However, I think that the chapter on linear algebra from the Deep Learning book is a bit tough for beginners. So I decided to produce code, examples and drawings on each part of this chapter in order to add steps that may not be obvious for beginners. I also think that you can convey as much information and knowledge through examples as through general definitions. The illustrations are a way to see the big picture of an idea. Finally, I think that coding is a great tool to experiment with these abstract mathematical notions. Along with pen and paper, it adds a layer of what you can try to push your understanding through new horizons.

Graphical representation is also very helpful to understand linear algebra. I tried to bind the concepts with plots (and code to produce it). The type of representation I liked most by doing this series is the fact that you can see any matrix as linear transformation of the space. In several chapters we will extend this idea and see how it can be useful to understand eigendecomposition, Singular Value Decomposition (SVD) or the Principal Components Analysis (PCA).

The use of Python/Numpy

In addition, I noticed that creating and reading examples is really helpful to understand the theory. It is why I built Python notebooks. The goal is two folds:

  1. To provide a starting point to use Python/Numpy to apply linear algebra concepts. And since the final goal is to use linear algebra concepts for data science, it seems natural to continuously go between theory and code. All you will need is a working Python installation with major mathematical librairies like Numpy/Scipy/Matplotlib.

  2. Give a more concrete vision of the underlying concepts. I found hugely useful to play and experiment with these notebooks in order to build my understanding of somewhat complicated theoretical concepts or notations. I hope that reading them will be as useful.

Syllabus

The syllabus follows exactly the Deep Learning Book so you can find more details if you can't understand one specific point while you are reading it. Here is a short description of the content:

  1. Scalars, Vectors, Matrices and Tensors

    An example of a scalar, a vector, a matrix and a tensor

    Difference between a scalar, a vector, a matrix and a tensor

    Light introduction to vectors, matrices, transpose and basic operations (addition of vectors of matrices). Introduces also Numpy functions and finally a word on broadcasting.

  2. Multiplying Matrices and Vectors

    An example of how to calculate the dot product

    The dot product explained

    This chapter is mainly on the dot product (vector and/or matrix multiplication). We will also see some of its properties. Then, we will see how to synthesize a system of linear equations using matrix notation. This is a major process for the following chapters.

  3. Identity and Inverse Matrices

    Example of an identity matrix

    An identity matrix

    We will see two important matrices: the identity matrix and the inverse matrix. We will see why they are important in linear algebra and how to use them with Numpy. Finally, we will see an example on how to solve a system of linear equations with the inverse matrix.

  4. Linear Dependence and Span

    Examples of systems of equations with 0, 1 and an infinite number of solutions

    A system of equations has no solution, 1 solution or an infinite number of solutions

    In this chapter we will continue to study systems of linear equations. We will see that such systems can't have more than one solution and less than an infinite number of solutions. We will see the intuition, the graphical representation and the proof behind this statement. Then we will go back to the matrix form of the system and consider what Gilbert Strang calls the row figure (we are looking at the rows, that is to say multiple equations) and the column figure (looking at the columns, that is to say the linear combination of the coefficients). We will also see what is linear combination. Finally, we will see examples of overdetermined and underdetermined systems of equations.

  5. Norms

    Representation of the squared L2 norm in 3 dimensions

    Shape of a squared L2 norm in 3 dimensions

    The norm of a vector is a function that takes a vector in input and outputs a positive value. It can be thought of as the length of the vector. It is for example used to evaluate the distance between the prediction of a model and the actual value. We will see different kinds of norms ($L^0$, $L^1$, $L^2$...) with examples.

  6. Special Kinds of Matrices and Vectors

    Example of a diagonal matrix and of a symmetric matrix

    A diagonal (left) and a symmetric matrix (right)

    We have seen in 2.3 some special matrices that are very interesting. We will see other types of vectors and matrices in this chapter. It is not a big chapter but it is important to understand the next ones.

  7. Eigendecomposition

    output_59_0

    We will see some major concepts of linear algebra in this chapter. We will start by getting some ideas on eigenvectors and eigenvalues. We will see that a matrix can be seen as a linear transformation and that applying a matrix on its eigenvectors gives new vectors with same direction. Then we will see how to express quadratic equations in a matrix form. We will see that the eigendecomposition of the matrix corresponding to the quadratic equation can be used to find its minimum and maximum. As a bonus, we will also see how to visualize linear transformation in Python!

  8. Singular Value Decomposition

    output_35_7

    We will see another way to decompose matrices: the Singular Value Decomposition or SVD. Since the beginning of this series I emphasized the fact that you can see matrices as linear transformation in space. With the SVD, you decompose a matrix in three other matrices. We will see that we look at these new matrices as sub-transformation of the space. Instead of doing the transformation in one movement, we decompose it in three movements. As a bonus, we will apply the SVD to image processing. We will see the effect of SVD on an example image of Lucy the goose. So keep on reading!

  9. The Moore-Penrose Pseudoinverse

    output_44_0

    We saw that not all matrices have an inverse. It is unfortunate because the inverse is used to solve system of equations. In some cases, a system of equations has no solution, and thus the inverse doesn’t exist. However it can be useful to find a value that is almost a solution (in terms of minimizing the error). This can be done with the pseudoinverse! We will see for instance how we can find the best-fit line of a set of data points with the pseudoinverse.

  10. The Trace Operator

    Calculating the trace of a matrix

    The trace of matrix

    We will see what is the Trace of a matrix. It will be needed for the last chapter on the Principal Component Analysis (PCA).

  11. The Determinant

    Comparison of positive and negative determinant

    Link between the determinant of a matrix and the transformation associated with it

    This chapter is about the determinant of a matrix. This special number can tell us a lot of things about our matrix!

  12. Example: Principal Components Analysis

    Mechanism of the gradient descent algorithm **Gradient descent**

    This is the last chapter of this series on linear algebra! It is about Principal Components Analysis (PCA). We will use some knowledge that we acquired along the preceding chapters to understand this important data analysis tool!

Requirements

This content is aimed at beginners but it would be nice to have at least some experience with mathematics.

Enjoy

I hope that you will find something interesting in this series. I tried to be as accurate as I could. If you find errors/misunderstandings/typos… Please report it! You can send me emails or open issues and pull request in the notebooks Github.

References

Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep learning. MIT press.

Owner
hadrienj
Data and Machine Learning - Freelance. Previously Machine Learning Scientist at Ava. Previously PhD Student at Ecole Normal Supérieure.
hadrienj
This repository contains code for building education startup.

Learning Management System Overview It's the code for EssayBrain, a tool for teacher that automatically grades and validates essays. In order to valid

Shyam Das Shrestha 1 Nov 21, 2021
Tools for analyzing Java JVM gc log files

gc_log This package consists of two separate utilities useful for : gc_log_visualizer.py regionsize.py GC Log Visualizer This was updated to run under

Brad Schoening 0 Jan 04, 2022
A Web app to Cross-Seed torrents in Deluge/qBittorrent/Transmission

SeedCross A Web app to Cross-Seed torrents in Deluge/qBittorrent/Transmission based on CrossSeedAutoDL Require Jackett Deluge/qBittorrent/Transmission

ccf2012 76 Dec 19, 2022
Course materials for a 3-day seminar "Machine Learning and NLP: Advances and Applications" at New College of Florida

Machine Learning and NLP: Advances and Applications This repository hosts the course materials used for a 3-day seminar "Machine Learning and NLP: Adv

Yoshi Suhara 11 Jun 22, 2022
Attempt at creating organized collection of little handy snippets of code I'm receiving along the way

ChaosCode Attempt at creating organized collection of little handy snippets of code I'm receiving along the way I always considered coding and program

INFU 4 Nov 26, 2022
HatAsm - a HatSploit native powerful assembler and disassembler that provides support for all common architectures

HatAsm - a HatSploit native powerful assembler and disassembler that provides support for all common architectures.

EntySec 8 Nov 09, 2022
SysCFG R/W Utility written in Swift

MagicCFG SysCFG R/W Utility written in Swift MagicCFG is one of our first, successful applications that we launched last year. The app makes it possib

Jan Fabel 82 Aug 08, 2022
A blazing fast mass certificate generator script for the community ⚡

A simple mass certificate generator script for the community ⚡ Source Code · Docs · Raw Script Docs All you need Certificate Design a simple template

Tushar Nankani 24 Jan 03, 2023
KiCad bus length matching script.

KiBus length matching script This script implements way to monitor multiple nets, combined into a bus that needs to be length matched

Piotr Esden-Tempski 22 Mar 17, 2022
Expense Tracker is a very good tool to keep track of your expenseditures and the total money you saved.

Expense Tracker is a very good tool to keep track of your expenseditures and the total money you saved.

Shreejan Dolai 9 Dec 31, 2022
A pomodoro app written in Python

Pomodoro It's a pomodoro app written in Python. You can minimize it while you're working if you want to, it'll pop up on your screen when the timer is

Yiğit 1 Dec 20, 2021
Python bindings for `ign-msgs` and `ign-transport`

Python Ignition This project aims to provide Python bindings for ignition-msgs and ignition-transport. It is a work in progress... C++ and Python libr

Rhys Mainwaring 3 Nov 08, 2022
Practice in Oxford_AI&ML class

Practice in Oxford_AI&ML class

St3ve Lee 2 Feb 04, 2022
A web application (with multiple API project options) that uses MariaDB HTAP!

Bookings Bookings is a web application that, backed by the power of the MariaDB Connectors and the MariaDB X4 Platform, unleashes the power of smart t

MariaDB Corporation 4 Dec 28, 2022
This is a survey of python's async concurrency features by example.

Survey of Python's Async Features This is a survey of python's async concurrency features by example. The purpose of this survey is to demonstrate tha

Tyler Lovely 4 Feb 10, 2022
Ballcone is a fast and lightweight server-side Web analytics solution.

Ballcone Ballcone is a fast and lightweight server-side Web analytics solution. It requires no JavaScript on your website. Screenshots Design Goals Si

Dmitry Ustalov 49 Dec 11, 2022
Project Faros is a reference implimentation of Red Hat OpenShift 4 on small footprint, bare-metal clusters.

Project Faros Project Faros is a reference implimentation of Red Hat OpenShift 4 on small footprint, bare-metal clusters. The project includes referen

project: Faros 9 Jul 18, 2022
A program that lets you use your tablet's tilting to emulate an actual joystick on a Linux computer.

Tablet Tilt Joystick A program that lets you use your tablet's tilting to emulate an actual joystick on a Linux computer. It's called tablet tilt joys

1 Feb 07, 2022
This is the course project of AI3602: Data Mining of SJTU

This is the course project of AI3602: Data Mining of SJTU. Group Members include Jinghao Feng, Mingyang Jiang and Wenzhong Zheng.

2 Jan 13, 2022
A play store search module

A play store search module

Fayas Noushad 5 Dec 01, 2021