Exercise to teach a newcomer to the CLSP grid to set up their environment and run jobs

Overview

Onboarding Exercise

You will make a list of the most common URLs in all the tweets in /home/aadelucia/files/minerva/raw_tweets_deduplicated/tweets/.

Goals of this exercise

  • Learn how to submit a job to the scheduler
  • Get comfortable with Tweet JSON format
  • Learn strategies for working with large datasets (map-reduce style setup)
  • Refresh on git commands

0. Set up your workspace

You will need to be on the grid for this exercise. You can access the grid with ssh @login.clsp.jhu.edu .

Set up your .bashrc

In order to make the grid really feel like home, we need to personalize it. We can do this by setting environment variables, having specific programs run on login, etc. Different OS have different places to save your preferences. On the grid, your preferences immediately get loaded upon login from ~/.profile. This is dumb because most other automated installed edit your ~/.bashrc to modify environment variables such as your PATH.

We need to edit your ~/.profile to source your .bashrc upon login. It's some weird thing where most programs edit your .bashrc but the system doesn't look at it upon login, so this will fix that. Open your ~/.profile with your favorite editor (I use vim) and add the following

# Code from Steven at CLSP help to read bashrc on login
if [ -n "BASH_VERSION" ]; then
    # include .bashrc if it exists
    if [ -f "$HOME/.bashrc" ]; then
    . "$HOME/.bashrc"
    fi
fi

Now you can add whatever you want to your ~/.bashrc and it will load on startup. For example, mine saves project directories as environment variables and loads a specific conda environment on login:

export PROJECT=/path/to/project
conda activate fav-env

Set up SSH keys

Okay we will need to set up multiple SSH keys in order to avoid entering our passwords over and over: (1) from your local machine to the grid (2) from the grid to GitHub (3) from your grid home directory to other nodes on the cluster.

  1. On your local machine, check if you have a key already. You can do this with ls ~/.ssh/id_rsa.pub. If that file exists, then you already have a key and skip to step 3.
  2. Generate a new private/public key pair with ssh-keygen -C local machine and accept the defaults. (-C is just a comment, this lets you know what the key is for)
  3. Copy your public key to the grid with ssh-copy-id -i ~/.ssh/id_rsa.pub @login.clsp.jhu.edu
  4. Make sure it works by ssh-ing to the grid. You should not have to type your password anymore. For debugging, contact me.
  5. On the grid, generate a new key for acessing GitHub with ssh-keygen -C CLSP grid and accept the defaults
  6. Copy the contents of ~/.ssh/id_rsa.pub and add it to your GitHub SSH keys (under Settings > SSH and GPG Keys)
  7. Add your Grid SSH key for easy node access with cat ~/.ssh/id_rsa.pub >> ~/.ssh/authorized_keys

CLSP Grid 101

Think of the grid, also referred to as a cluster or a "supercomputer" on large scales, as a community of well-organized citizens. Each citizen (node) has its role to play in the cluster society. When you log onto the cluster, the login nodes greet you. Their names are login and login2, and are accessed with ssh @login.clsp.jhu.edu . Their job is to welcome you to the grid and so some SCPing for files. That is all, everything else is above their paygrade. Now there are the compute nodes. They are the real heavy lifters, the real workers! They are identified by a letter and a number, such as b01 and c12. To see a full list of the nodes, run qconf -sel. These nodes are where you do all your file editing and debugging. They are accessed by first logging onto the grid and then running ssh like ssh b10. Working only on the compute nodes frees up the login node resources to welcome others to the grid.

It's easy to forget to immediately move to a compute node, so a modified ssh script can be used to access a compute node directly. From your local machine, run

ssh [email protected] -t ssh b10

This accesses the grid through the login node and then immediately ssh's onto a compute node.

Set up Anaconda

The grid has Python 3 but in order to make setting up our own environments easier, we will install the package manager Anaconda. Or, more specifically, Miniconda, which is just a lightweight version of Anaconda (doesn't come with all the packages installed).

Log on to the grid and run the following in your home directory:

wget https://repo.anaconda.com/miniconda/Miniconda3-latest-Linux-x86_64.sh
chmod u+x Miniconda3-latest-Linux-x86_64.sh
./Miniconda3-latest-Linux-x86_64.sh

This downloads the Miniconda installation file and begins the installation process. I recommend installing it in your home directory, but you could also put it in the folder you created on a compute node.

After installation is over, run source ~/.bashrc to update your PATH.

To set up an environment for this project, go to the Minerva project root directory and run:

conda env create --file environment.yml
conda activate onboarding

Note: You can add conda activate onboarding to the end of your ~/.bashrc to make this environment load upon login.

Clone this repo (if you haven't already)

You will have to re-clone the repo if you already cloned using HTTPS and would like to use SSH.

  1. Pick a pretty node name that you like (list node names with ls /export/. I'm on /export/fs04/a13) and create a folder with your name in /export/ . The /home directory is small so do not store large datasets or repos there, or it could impact other users.
  2. Clone this repo with git clone [email protected]:AADeLucia/CLSP-grid-onboarding.git

1. Fill in the code

Remember from above, edit on a compute node!

analyze_tweet_urls.py has the starter code. The task is to complete the script so that it does the following:

Loops through the input files, counts the unique URLs, and saves the counts in the output directory in an easily parsible format (one output file per input file)

As I've been messing with tweets I created a small package (littlebird) for the processes I do over and over again (like iterating over GZIP'd Twitter files). It is already installed in the onboarding environment. An example of how to use littlebird is in token_count_features.py. I highly recommend looking at this script for a guide on how to do this exercise and how to use littlebird.

2. Submit the job to run

Okay your script is done, now we want to run it! There are about 86K Twitter files so we need to be smart about this or it will take 5ever. Luckily, we already wrote our script to take in a list of files, so the plan is to use a "job array" to submit multiple small jobs as part of one big job. A starter script that you need to fill in is batch_count_urls.sh.

  1. Edit batch_count_urls.sh to work with your script. I suggest starting with -t 1-2 to make sure your script works.
  2. Submit the job with qsub batch_count_urls.sh
  3. Check the progress of your job by looking at your log file or qstat -u

If your job status is Eqw this means there was an error in the job submission. To read the errors run qstat -j .

Note: when working with a job array, each job gets submitted to run with the most recent version of your code so be careful about editing your code while waiting for it to end.

3. Aggregate the counts

Create a method to aggregate the counts (in analyze_tweet_urls.py) that:

  • Loops over all the files in a given directory
  • Adds up the counts for the unique URLs
  • Saves the output (either a pickle dump or to a tab-separated (TSV) file)
  • Can be called with a command-line flag (e.g. --aggregate)

4. Make a pretty visualization

You have your results, yay! Now I want you to do something pretty with it. Make a word cloud, do a basic plot, whatever you want! This part is mostly to teach you how to use a jupyter notebook on the grid.

  1. Edit the paths in forward_notebook.sh to match your desired directory (home or where your files are). Also, change the PORT variable to a unique number (preferably above 5000).
  2. From the login node (NOT a compute node like b10. To get from a compute node to login run exit) run ~/.forward_notebook.sh to start the Jupyter Notebook. This job will stay running, so you only have to run this script again if something goes wrong.
  3. On your local machine run ssh -L {PORT}:localhost:{PORT} @login.clsp.jhu.edu (where PORT is from the earlier step) and navigate to localhost:{PORT} in your browser. If you are prompted for a token or password, open the notebook_log directory (specified in forward_notebook.sh) and take the notebook URL from the most recent log file.
  4. Make a visualization

5. Bask in the glory

Congratulations, you finished the exercise! Go reward yourself with some ice cream or send me a message so I can compliment you.

Owner
Alexandra
Computer Science graduate student at Johns Hopkins. My work is in natural language processing, data science, and machine learning.
Alexandra
Code for the manim-generated scenes used in 3blue1brown videos

This project contains the code used to generate the explanatory math videos found on 3Blue1Brown. This almost entirely consists of scenes generated us

Grant Sanderson 4.1k Jan 02, 2023
Simple yet flexible natural sorting in Python.

natsort Simple yet flexible natural sorting in Python. Source Code: https://github.com/SethMMorton/natsort Downloads: https://pypi.org/project/natsort

Seth Morton 712 Dec 23, 2022
A powerful and user-friendly binary analysis platform!

angr angr is a platform-agnostic binary analysis framework. It is brought to you by the Computer Security Lab at UC Santa Barbara, SEFCOM at Arizona S

6.3k Jan 02, 2023
Sudoku solver using backtracking

Sudoku solver Sudoku solver using backtracking Basically in sudoku, we want to be able to solve a sudoku puzzle given an input like this, which repres

Kylie 99 Jan 07, 2023
Google Foobar challenge solutions from my experience and other's on the web.

Google Foobar challenge Google Foobar challenge solutions from my experience and other's on the web. Note: Problems indicated with "Mine" are tested a

Islam Ayman 6 Jan 20, 2022
Windows Task Manager with special features, written in Python.

Killer That damn Chrome ⬇ Download here · 👋 Join our discord Tired of trying to kill processes with the default Windows Task Manager? Selecting one b

Nathan Araújo 49 Jan 03, 2023
run-js Goal: The Easiest Way to Run JavaScript in Python

run-js Goal: The Easiest Way to Run JavaScript in Python features Stateless Async JS Functions No Intermediary Files Functional Programming CommonJS a

Daniel J. Dufour 9 Aug 16, 2022
WriteAIr is a website which allows users to stream their writing.

WriteAIr is a website which allows users to stream their writing. It uses HSV masking to detect a pen which the user writes with. Plus, users can select a wide range of options through hand gestures!

Atharva Patil 1 Nov 01, 2021
使用京东cookie一键生成所有退会链接

JDMemberCloseLinks 本项目旨在使用京东cookie一键生成所有退会链接

hyzaw 68 Jun 10, 2022
Grammar of Scalable Linked Interactive Nucleotide Graphics

Gosling.js Gosling.js is a declarative grammar for interactive (epi)genomics visualization on the Web. ⚠️ Please be aware that the grammar of Gosling.

Gosling 126 Nov 29, 2022
Some scripts for the Reverse engineered (old) api of CafeBazaar

bazz Note: This project is done and published only for educational purposes. Some scripts for the Reverse engineered (old) API of CafeBazaar. Be aware

Mohsen Tahmasebi 35 Dec 25, 2022
Double Pendulum implementation in Python, now with added pendulums and trails :D

Double Pendulum Using Curses in Python. A nice relaxing double pendulum simulation using ASCII, able to simulate multiple pendulums at once, and provi

Nekurone 62 Dec 14, 2022
A professional version for LBS

呐 Yuki Pro~ 懒兵服御用版本,yuki小姐觉得没必要单独造一个仓库,但懒兵觉得有必要并强制执行 将na-yuki框架抽象为模块,功能拆分为独立脚本,使用脚本注释器使其作为py运行 文件结构: na_yuki_pro_example.py 是一个说明脚本,用来直观展示na,yuki! Pro

1 Dec 21, 2021
A sandpit for textual related things

A sandpit repo for testing textual related things.

Craig Gumbley 1 Nov 08, 2021
This is an implementation of NeuronJ work with python.

NeuronJ This is an implementation of NeuronJ work with python. NeuronJ is a plug-in for ImageJ that allows you to create and edit neurons masks. Image

Mohammad Mahdi Samei 3 Aug 28, 2022
HomeAssistant Linux Companion

Application to run on linux desktop computer to provide sensors data to homeasssistant, and get notifications as if it was a mobile device.

Javier Lopez 10 Dec 27, 2022
Async-first dependency injection library based on python type hints

Dependency Depression Async-first dependency injection library based on python type hints Quickstart First let's create a class we would be injecting:

Doctor 8 Oct 10, 2022
A program to calculate the are of a triangle. made with Python.

Area-Calculator What is Area-Calculator? Area-Calculator is a program to find out the area of a triangle easily. fully made with Python. Needed a pyth

Chandula Janith 0 Nov 27, 2021
Pre-commit hook for upgrading type hints

This is a pre-commit hook configured to automatically upgrade your type hints to the new native types implemented in PEP 585.

snok 54 Nov 14, 2022
Python library for datamining glitch information from Gen 1 Pokémon GameBoy ROMs

g1utils This is a Python library for datamining information about various glitches (glitch Pokémon, glitch maps, etc.) from Gen 1 Pokémon ROMs. TODO A

1 Jan 13, 2022