Exercise to teach a newcomer to the CLSP grid to set up their environment and run jobs

Overview

Onboarding Exercise

You will make a list of the most common URLs in all the tweets in /home/aadelucia/files/minerva/raw_tweets_deduplicated/tweets/.

Goals of this exercise

  • Learn how to submit a job to the scheduler
  • Get comfortable with Tweet JSON format
  • Learn strategies for working with large datasets (map-reduce style setup)
  • Refresh on git commands

0. Set up your workspace

You will need to be on the grid for this exercise. You can access the grid with ssh @login.clsp.jhu.edu .

Set up your .bashrc

In order to make the grid really feel like home, we need to personalize it. We can do this by setting environment variables, having specific programs run on login, etc. Different OS have different places to save your preferences. On the grid, your preferences immediately get loaded upon login from ~/.profile. This is dumb because most other automated installed edit your ~/.bashrc to modify environment variables such as your PATH.

We need to edit your ~/.profile to source your .bashrc upon login. It's some weird thing where most programs edit your .bashrc but the system doesn't look at it upon login, so this will fix that. Open your ~/.profile with your favorite editor (I use vim) and add the following

# Code from Steven at CLSP help to read bashrc on login
if [ -n "BASH_VERSION" ]; then
    # include .bashrc if it exists
    if [ -f "$HOME/.bashrc" ]; then
    . "$HOME/.bashrc"
    fi
fi

Now you can add whatever you want to your ~/.bashrc and it will load on startup. For example, mine saves project directories as environment variables and loads a specific conda environment on login:

export PROJECT=/path/to/project
conda activate fav-env

Set up SSH keys

Okay we will need to set up multiple SSH keys in order to avoid entering our passwords over and over: (1) from your local machine to the grid (2) from the grid to GitHub (3) from your grid home directory to other nodes on the cluster.

  1. On your local machine, check if you have a key already. You can do this with ls ~/.ssh/id_rsa.pub. If that file exists, then you already have a key and skip to step 3.
  2. Generate a new private/public key pair with ssh-keygen -C local machine and accept the defaults. (-C is just a comment, this lets you know what the key is for)
  3. Copy your public key to the grid with ssh-copy-id -i ~/.ssh/id_rsa.pub @login.clsp.jhu.edu
  4. Make sure it works by ssh-ing to the grid. You should not have to type your password anymore. For debugging, contact me.
  5. On the grid, generate a new key for acessing GitHub with ssh-keygen -C CLSP grid and accept the defaults
  6. Copy the contents of ~/.ssh/id_rsa.pub and add it to your GitHub SSH keys (under Settings > SSH and GPG Keys)
  7. Add your Grid SSH key for easy node access with cat ~/.ssh/id_rsa.pub >> ~/.ssh/authorized_keys

CLSP Grid 101

Think of the grid, also referred to as a cluster or a "supercomputer" on large scales, as a community of well-organized citizens. Each citizen (node) has its role to play in the cluster society. When you log onto the cluster, the login nodes greet you. Their names are login and login2, and are accessed with ssh @login.clsp.jhu.edu . Their job is to welcome you to the grid and so some SCPing for files. That is all, everything else is above their paygrade. Now there are the compute nodes. They are the real heavy lifters, the real workers! They are identified by a letter and a number, such as b01 and c12. To see a full list of the nodes, run qconf -sel. These nodes are where you do all your file editing and debugging. They are accessed by first logging onto the grid and then running ssh like ssh b10. Working only on the compute nodes frees up the login node resources to welcome others to the grid.

It's easy to forget to immediately move to a compute node, so a modified ssh script can be used to access a compute node directly. From your local machine, run

ssh [email protected] -t ssh b10

This accesses the grid through the login node and then immediately ssh's onto a compute node.

Set up Anaconda

The grid has Python 3 but in order to make setting up our own environments easier, we will install the package manager Anaconda. Or, more specifically, Miniconda, which is just a lightweight version of Anaconda (doesn't come with all the packages installed).

Log on to the grid and run the following in your home directory:

wget https://repo.anaconda.com/miniconda/Miniconda3-latest-Linux-x86_64.sh
chmod u+x Miniconda3-latest-Linux-x86_64.sh
./Miniconda3-latest-Linux-x86_64.sh

This downloads the Miniconda installation file and begins the installation process. I recommend installing it in your home directory, but you could also put it in the folder you created on a compute node.

After installation is over, run source ~/.bashrc to update your PATH.

To set up an environment for this project, go to the Minerva project root directory and run:

conda env create --file environment.yml
conda activate onboarding

Note: You can add conda activate onboarding to the end of your ~/.bashrc to make this environment load upon login.

Clone this repo (if you haven't already)

You will have to re-clone the repo if you already cloned using HTTPS and would like to use SSH.

  1. Pick a pretty node name that you like (list node names with ls /export/. I'm on /export/fs04/a13) and create a folder with your name in /export/ . The /home directory is small so do not store large datasets or repos there, or it could impact other users.
  2. Clone this repo with git clone [email protected]:AADeLucia/CLSP-grid-onboarding.git

1. Fill in the code

Remember from above, edit on a compute node!

analyze_tweet_urls.py has the starter code. The task is to complete the script so that it does the following:

Loops through the input files, counts the unique URLs, and saves the counts in the output directory in an easily parsible format (one output file per input file)

As I've been messing with tweets I created a small package (littlebird) for the processes I do over and over again (like iterating over GZIP'd Twitter files). It is already installed in the onboarding environment. An example of how to use littlebird is in token_count_features.py. I highly recommend looking at this script for a guide on how to do this exercise and how to use littlebird.

2. Submit the job to run

Okay your script is done, now we want to run it! There are about 86K Twitter files so we need to be smart about this or it will take 5ever. Luckily, we already wrote our script to take in a list of files, so the plan is to use a "job array" to submit multiple small jobs as part of one big job. A starter script that you need to fill in is batch_count_urls.sh.

  1. Edit batch_count_urls.sh to work with your script. I suggest starting with -t 1-2 to make sure your script works.
  2. Submit the job with qsub batch_count_urls.sh
  3. Check the progress of your job by looking at your log file or qstat -u

If your job status is Eqw this means there was an error in the job submission. To read the errors run qstat -j .

Note: when working with a job array, each job gets submitted to run with the most recent version of your code so be careful about editing your code while waiting for it to end.

3. Aggregate the counts

Create a method to aggregate the counts (in analyze_tweet_urls.py) that:

  • Loops over all the files in a given directory
  • Adds up the counts for the unique URLs
  • Saves the output (either a pickle dump or to a tab-separated (TSV) file)
  • Can be called with a command-line flag (e.g. --aggregate)

4. Make a pretty visualization

You have your results, yay! Now I want you to do something pretty with it. Make a word cloud, do a basic plot, whatever you want! This part is mostly to teach you how to use a jupyter notebook on the grid.

  1. Edit the paths in forward_notebook.sh to match your desired directory (home or where your files are). Also, change the PORT variable to a unique number (preferably above 5000).
  2. From the login node (NOT a compute node like b10. To get from a compute node to login run exit) run ~/.forward_notebook.sh to start the Jupyter Notebook. This job will stay running, so you only have to run this script again if something goes wrong.
  3. On your local machine run ssh -L {PORT}:localhost:{PORT} @login.clsp.jhu.edu (where PORT is from the earlier step) and navigate to localhost:{PORT} in your browser. If you are prompted for a token or password, open the notebook_log directory (specified in forward_notebook.sh) and take the notebook URL from the most recent log file.
  4. Make a visualization

5. Bask in the glory

Congratulations, you finished the exercise! Go reward yourself with some ice cream or send me a message so I can compliment you.

Owner
Alexandra
Computer Science graduate student at Johns Hopkins. My work is in natural language processing, data science, and machine learning.
Alexandra
Allow you to create you own custom decentralize job management system.

ants Allow you to create you own custom decentralize job management system. Install $ git clone https://github.com/hvuhsg/ants.git Run monitor exampl

1 Feb 15, 2022
Just some mtk tool for exploitation, reading/writing flash and doing crazy stuff

Just some mtk tool for exploitation, reading/writing flash and doing crazy stuff. For linux, a patched kernel is needed (see Setup folder) (except for read/write flash). For windows, you need to inst

Bjoern Kerler 1.1k Dec 31, 2022
Adjust the white point, gamma or make your XDR display darker without losing HDR peak luminance or the ability to adjust display brightness

XDR Tuner Adjust the white point, gamma or make your XDR display darker without losing HDR peak luminance or the ability to adjust display brightness

François Simond 16 Dec 28, 2022
UF3: a python library for generating ultra-fast interatomic potentials

Ultra-Fast Force Fields (UF3) S. R. Xie, M. Rupp, and R. G. Hennig, "Ultra-fast interpretable machine-learning potentials", preprint arXiv:2110.00624

Ultra-Fast Force Fields 24 Nov 13, 2022
Repository specifically for tcss503-22-wi Students

TCSS503: Algorithms and Problem Solving for Software Developers Course Description Introduces advanced data structures and key algorithmic techniques

Kevin E. Anderson 3 Nov 08, 2022
ThnoolBox - A thneed is a multi-use versatile object

ThnoolBox Have you ever wanted a collection of bodged desktop apps that are Lorax themed ? No ? Sucks to suck I guess Apps & their downsides CalculaTh

pocoyo 1 Jan 21, 2022
pyToledo is a Python library to interact with the common virtual learning environment for the Association KU Leuven (Toledo).

pyToledo pyToledo is a Python library to interact with the common virtual learning environment for the Association KU Leuven a.k.a Toledo. Motivation

Daan Vervacke 5 Jan 03, 2022
LSO, also known as Linux Swap Operator, is a software with both GUI and terminal versions that you can manage the Swap area for Linux operating systems.

LSO - Linux Swap Operator Türkçe - LSO Nedir? LSO, diğer adıyla Linux Swap Operator Linux işletim sistemleri için Swap alanını yönetebileceğiniz hem G

Eren İnce 4 Feb 09, 2022
Quantity Takeoff with Python. Collecting groups of elements by filters

The free tool QuantityTakeoff allows you to group elements from Revit and IFC models (in BIMJSON-CSV format) with just a few filters and find the required volume values for the grouped elements.

OpenDataBIM 9 Jan 06, 2023
management tool for systemd-nspawn containers

nspctl nspctl, management tool for systemd-nspawn containers. Why nspctl? There are different tools for systemd-nspawn containers. You can use native

Emre Eryilmaz 5 Nov 27, 2022
TinyBar - Tiny MacOS menu bar utility to track price dynamics for assets on TinyMan.org

📃 About A simple MacOS menu bar app to display current coins from most popular

Al 8 Dec 23, 2022
The worst and slowest programming language you have ever seen

VenumLang this is a complete joke EXAMPLE: fizzbuzz in venumlang x = 0

Venum 7 Mar 12, 2022
A Tool to validate domestic New Zealand vaccine passes

Vaccine Validator Tool to validate domestic New Zealand vaccine passes Create a new virtual environment: python3 -m venv ./venv Activate virtual envi

8 May 01, 2022
PKU team for 2021 project 'Guangchangwu detection'.

PKU team for 2021 project 'Guangchangwu detection'.

Helin Wang 3 Feb 21, 2022
Semester long, web application project for CSCI 4370/6370 (Database Management)

Database_Project Prototype ideas for website: Computer Science library (Sells books, products, etc.) Code editor Graph visualizer / creator (can save

Jordan Harman 4 Feb 17, 2022
A StarkNet project template based on a Pythonic environment

StarkNet Project Template This is an opinionated StarkNet project template. It is based around the Python's ecosystem and best practices. tox to manag

Francesco Ceccon 5 Apr 21, 2022
KeyLogger cliente-servidor em Python para estudos

KeyLogger Esse projeto é apenas para estudos, não nos responsabilisamos por qualquer uso indevido ou prejudiciais do mesmo. Sobre O objetivo do projet

1 Dec 17, 2021
This project recreates the R-based RCy3 Cytoscape Automation library as a Python package.

Python library for calling Cytoscape Automation via CyREST

Cytoscape Consortium 40 Dec 22, 2022
IST-Website - IST Tutoring Portal for python

IST Tutoring Portal This portal is a web based interface to handle student help

Jean 3 Jan 03, 2022
Site de gestion de cave à vin utilisant une BDD manipulée avec SQLite3 via Python

cave-vin Site de gestion de cave à vin utilisant une bdd manipulée avec MySQL ACCEDER AU SITE : Pour accéder à votre cave vous aurez besoin de lancer

Elouann Lucas 0 Jul 05, 2022