Feature Detection Based Template Matching

Overview

Feature Detection Based Template Matching

The classification of the photos was made using the OpenCv template Matching method.

Installation

Use the package manager pip to install OpenCV and Matplotlib

pip install opencv-python
pip install matplotlib

Code Review

Loading Images

'''Taking all images that we want to classify for them'''
path= "..\\FeatureBasedTemplateMatching\\Class\\"
images = []
classname = []
image_list = os.listdir(path)

Creating Classes

'''Creating classes via image names'''
for clss in image_list:
    imgCurrent = cv2.imread(f'{path}{clss}',0)
    images.append(imgCurrent)
    classname.append(os.path.splitext(clss)[0])

Creating ORB Object

About ORB

'''Creating ORB object'''#Fast and Free to use
orb = cv2.ORB_create()

Finding all Decriptors

Computed descriptors. Output concatenated vectors of descriptors. Each descriptor is a 32-element vector, as returned by cv.ORB.descriptorSize, so the total size of descriptors will be numel(keypoints) * obj.descriptorSize(), i.e a matrix of size N-by-32 of class uint8, one row per keypoint.

'''Finding All Descriptors'''
def findDesc(images):
    descList = []
    for image in images:
        kp,desc = orb.detectAndCompute(image,None)
        descList.append(desc)
    return descList

Finding Detection Image ID

'''Finding image id via using descritor list'''
def findID(img, descList):
    kp2, desc2 = orb.detectAndCompute(img,None)
    bf = cv2.BFMatcher()
    matchList = []
    finalval = -1
    try:
        for des in descList:
            matches = bf.knnMatch(des,desc2,k=2)
            goodmatches = []
            for m, n in matches:
                if m.distance < 0.75 * n.distance:
                    goodmatches.append([m])
            matchList.append(len(goodmatches))
    except:
        pass
    if matchList:
        if max(matchList) > TRESHOLD:
            finalval = matchList.index(max(matchList))
    return finalval

Detection

'''Image that we want to detect'''
detection_image = cv2.imread("..\\FeatureBasedTemplateMatching\\10kmmatch.jpg")
img_gray = cv2.cvtColor(detection_image,cv2.COLOR_BGR2GRAY)


descList = findDesc(images)
id =findID(img_gray,descList)

if id != -1:
    cv2.putText(detection_image,classname[id],(50,50),cv2.FONT_HERSHEY_PLAIN,5,(255,0,0),3)

Output

alt text

Contributing

Pull requests are welcome. For major changes, please open an issue first to discuss what you would like to change.

Please make sure to update tests as appropriate.

License

MIT

Owner
Muhammet Erem
Muhammet Erem
Describing statistical models in Python using symbolic formulas

Patsy is a Python library for describing statistical models (especially linear models, or models that have a linear component) and building design mat

Python for Data 866 Dec 16, 2022
AWS Glue ETL Code Samples

AWS Glue ETL Code Samples This repository has samples that demonstrate various aspects of the new AWS Glue service, as well as various AWS Glue utilit

AWS Samples 1.2k Jan 03, 2023
A model checker for verifying properties in epistemic models

Epistemic Model Checker This is a model checker for verifying properties in epistemic models. The goal of the model checker is to check for Pluralisti

Thomas Träff 2 Dec 22, 2021
The Dash Enterprise App Gallery "Oil & Gas Wells" example

This app is based on the Dash Enterprise App Gallery "Oil & Gas Wells" example. For more information and more apps see: Dash App Gallery See the Dash

Austin Caudill 1 Nov 08, 2021
Statsmodels: statistical modeling and econometrics in Python

About statsmodels statsmodels is a Python package that provides a complement to scipy for statistical computations including descriptive statistics an

statsmodels 8k Dec 29, 2022
A lightweight, hub-and-spoke dashboard for multi-account Data Science projects

A lightweight, hub-and-spoke dashboard for cross-account Data Science Projects Introduction Modern Data Science environments often involve many indepe

AWS Samples 3 Oct 30, 2021
Gathering data of likes on Tinder within the past 7 days

tinder_likes_data Gathering data of Likes Sent on Tinder within the past 7 days. Versions November 25th, 2021 - Functionality to get the name and age

Alex Carter 12 Jan 05, 2023
Calculate multilateral price indices in Python (with Pandas and PySpark).

IndexNumCalc Calculate multilateral price indices using the GEKS-T (CCDI), Time Product Dummy (TPD), Time Dummy Hedonic (TDH), Geary-Khamis (GK) metho

Dr. Usman Kayani 3 Apr 27, 2022
First and foremost, we want dbt documentation to retain a DRY principle. Every time we repeat ourselves, we waste our time. Second, we want to understand column level lineage and automate impact analysis.

dbt-osmosis First and foremost, we want dbt documentation to retain a DRY principle. Every time we repeat ourselves, we waste our time. Second, we wan

Alexander Butler 150 Jan 06, 2023
Python Practicum - prepare for your Data Science interview or get a refresher.

Python-Practicum Python Practicum - prepare for your Data Science interview or get a refresher. Data Data visualization using data on births from the

Jovan Trajceski 1 Jul 27, 2021
Fit models to your data in Python with Sherpa.

Table of Contents Sherpa License How To Install Sherpa Using Anaconda Using pip Building from source History Release History Sherpa Sherpa is a modeli

134 Jan 07, 2023
PipeChain is a utility library for creating functional pipelines.

PipeChain Motivation PipeChain is a utility library for creating functional pipelines. Let's start with a motivating example. We have a list of Austra

Michael Milton 2 Aug 07, 2022
BioMASS - A Python Framework for Modeling and Analysis of Signaling Systems

Mathematical modeling is a powerful method for the analysis of complex biological systems. Although there are many researches devoted on produ

BioMASS 22 Dec 27, 2022
DenseClus is a Python module for clustering mixed type data using UMAP and HDBSCAN

DenseClus is a Python module for clustering mixed type data using UMAP and HDBSCAN. Allowing for both categorical and numerical data, DenseClus makes it possible to incorporate all features in cluste

Amazon Web Services - Labs 53 Dec 08, 2022
WaveFake: A Data Set to Facilitate Audio DeepFake Detection

WaveFake: A Data Set to Facilitate Audio DeepFake Detection This is the code repository for our NeurIPS 2021 (Track on Datasets and Benchmarks) paper

Chair for Sys­tems Se­cu­ri­ty 27 Dec 22, 2022
MDAnalysis is a Python library to analyze molecular dynamics simulations.

MDAnalysis Repository README [*] MDAnalysis is a Python library for the analysis of computer simulations of many-body systems at the molecular scale,

MDAnalysis 933 Dec 28, 2022
Dbt-core - dbt enables data analysts and engineers to transform their data using the same practices that software engineers use to build applications.

Dbt-core - dbt enables data analysts and engineers to transform their data using the same practices that software engineers use to build applications.

dbt Labs 6.3k Jan 08, 2023
Sentiment analysis on streaming twitter data using Spark Structured Streaming & Python

Sentiment analysis on streaming twitter data using Spark Structured Streaming & Python This project is a good starting point for those who have little

Himanshu Kumar singh 2 Dec 04, 2021
Udacity-api-reporting-pipeline - Udacity api reporting pipeline

udacity-api-reporting-pipeline In this exercise, you'll use portions of each of

Fabio Barbazza 1 Feb 15, 2022
PyTorch implementation for NCL (Neighborhood-enrighed Contrastive Learning)

NCL (Neighborhood-enrighed Contrastive Learning) This is the official PyTorch implementation for the paper: Zihan Lin*, Changxin Tian*, Yupeng Hou* Wa

RUCAIBox 73 Jan 03, 2023