Page to PAGE Layout Analysis Tool

Overview

P2PaLA

Python Version Code Style

Page to PAGE Layout Analysis (P2PaLA) is a toolkit for Document Layout Analysis based on Neural Networks.

πŸ’₯ Try our new DEMO for online baseline detection. ❗ ❗

If you find this toolkit useful in your research, please cite:

@misc{p2pala2017,
  author = {Lorenzo QuirΓ³s},
  title = {P2PaLA: Page to PAGE Layout Analysis tookit},
  year = {2017},
  publisher = {GitHub},
  note = {GitHub repository},
  howpublished = {\url{https://github.com/lquirosd/P2PaLA}},
}

Check this paper for more details Arxiv.

Requirements

  • Linux (OSX may work, but untested.).
  • Python (2.7, 3.6 under conda virtual environment is recomended)
  • Numpy
  • PyTorch (1.0). PyTorch 0.3.1 compatible on this branch
  • OpenCv (3.4.5.20).
  • NVIDIA GPU + CUDA CuDNN (CPU mode and CUDA without CuDNN works, but is not recomended for training).
  • tensorboard-pytorch (v0.9) [Optional]. pip install tensorboardX > A diferent conda env is recomended to keep tensorflow separated from PyTorch

Install

python setup.py install

To install python dependencies alone, use requirements file conda env create --file conda_requirements.yml

Usage

  1. Input data must follow the folder structure data_tag/page, where images must be into the data_tag folder and xml files into page. For example:
mkdir -p data/{train,val,test,prod}/page;
tree data;
data
β”œβ”€β”€ prod
β”‚   β”œβ”€β”€ page
β”‚   β”‚   β”œβ”€β”€ prod_0.xml
β”‚   β”‚   └── prod_1.xml
β”‚   β”œβ”€β”€ prod_0.jpg
β”‚   └── prod_1.jpg
β”œβ”€β”€ test
β”‚   β”œβ”€β”€ page
β”‚   β”‚   β”œβ”€β”€ test_0.xml
β”‚   β”‚   └── test_1.xml
β”‚   β”œβ”€β”€ test_0.jpg
β”‚   └── test_1.jpg
β”œβ”€β”€ train
β”‚   β”œβ”€β”€ page
β”‚   β”‚   β”œβ”€β”€ train_0.xml
β”‚   β”‚   └── train_1.xml
β”‚   β”œβ”€β”€ train_0.jpg
β”‚   └── train_1.jpg
└── val
    β”œβ”€β”€ page
    β”‚   β”œβ”€β”€ val_0.xml
    β”‚   └── val_1.xml
    β”œβ”€β”€ val_0.jpg
    └── val_1.jpg
  1. Run the tool.
python P2PaLA.py --config config.txt --tr_data ./data/train --te_data ./data/test --log_comment "_foo"

❗ Pre-trained models available here

  1. Use TensorBoard to visualize train status:
tensorboard --logdir ./work/runs
  1. xml-PAGE files must be at "./work/results/test/"

We recommend Transkribus or nw-page-editor to visualize and edit PAGE-xml files.

  1. For detail about arguments and config file, see docs or python P2PaLa.py -h.
  2. For more detailed example see egs:
    • Bozen dataset see
    • cBAD complex competition dataset see
    • OHG dataset see

License

GNU General Public License v3.0 See LICENSE to see the full text.

Acknowledgments

Code is inspired by pix2pix and pytorch-CycleGAN-and-pix2pix

Owner
Lorenzo QuirΓ³s DΓ­az
Lorenzo QuirΓ³s DΓ­az
Layout Analysis Evaluator for the ICDAR 2017 competition on Layout Analysis for Challenging Medieval Manuscripts

LayoutAnalysisEvaluator Layout Analysis Evaluator for: ICDAR 2019 Historical Document Reading Challenge on Large Structured Chinese Family Records ICD

17 Dec 08, 2022
Web interface for browsing arXiv papers

Currently, arxivbox considers only major computer vision and machine learning conferences

Ankan Kumar Bhunia 12 Sep 11, 2022
Train custom VR face tracking parameters

Pal Buddy Guy: The anipal's best friend This is a small script to improve upon the tracking capabilities of the Vive Pro Eye and facial tracker. You c

7 Dec 12, 2021
Page to PAGE Layout Analysis Tool

P2PaLA Page to PAGE Layout Analysis (P2PaLA) is a toolkit for Document Layout Analysis based on Neural Networks. πŸ’₯ Try our new DEMO for online baseli

Lorenzo QuirΓ³s DΓ­az 180 Nov 24, 2022
MONAI Label is a server-client system that facilitates interactive medical image annotation by using AI.

MONAI Label is a server-client system that facilitates interactive medical image annotation by using AI. It is an open-source and easy-to-install ecosystem that can run locally on a machine with one

Project MONAI 344 Dec 23, 2022
TedEval: A Fair Evaluation Metric for Scene Text Detectors

TedEval: A Fair Evaluation Metric for Scene Text Detectors Official Python 3 implementation of TedEval | paper | slides Chae Young Lee, Youngmin Baek,

Clova AI Research 167 Nov 20, 2022
A simple python program to record security cam footage by detecting a face and body of a person in the frame.

SecurityCam A simple python program to record security cam footage by detecting a face and body of a person in the frame. This code was created by me,

1 Nov 08, 2021
A simple Security Camera created using Opencv in Python where images gets saved in realtime in your Dropbox account at every 5 seconds

Security Camera using Opencv & Dropbox This is a simple Security Camera created using Opencv in Python where images gets saved in realtime in your Dro

Arpit Rath 1 Jan 31, 2022
pyntcloud is a Python library for working with 3D point clouds.

pyntcloud is a Python library for working with 3D point clouds.

David de la Iglesia Castro 1.2k Jan 07, 2023
Balabobapy - Using artificial intelligence algorithms to continue the text

Balabobapy - Using artificial intelligence algorithms to continue the text

qxtony 1 Feb 04, 2022
A version of nrsc5-gui that merges the interface developed by cmnybo with the architecture developed by zefie in order to start a new baseline that is not heavily dependent upon Python processing.

NRSC5-DUI is a graphical interface for nrsc5. It makes it easy to play your favorite FM HD radio stations using an RTL-SDR dongle. It will also displa

61 Dec 22, 2022
Python bindings for JIGSAW: a Delaunay-based unstructured mesh generator.

JIGSAW: An unstructured mesh generator JIGSAW is an unstructured mesh generator and tessellation library; designed to generate high-quality triangulat

Darren Engwirda 26 Dec 13, 2022
A curated list of awesome synthetic data for text location and recognition

awesome-SynthText A curated list of awesome synthetic data for text location and recognition and OCR datasets. Text location SynthText SynthText_Chine

Tianzhong 283 Jan 05, 2023
A tool to enhance your old/damaged pictures built using python & opencv.

Breathe Life into your Old Pictures Table of Contents About The Project Getting Started Prerequisites Usage Contact Acknowledgments About The Project

Shah Anwaar Khalid 5 Dec 16, 2021
Introduction to Augmented Reality (AR) with Python 3 and OpenCV 4.2.

Introduction to Augmented Reality (AR) with Python 3 and OpenCV 4.2.

fernanda rodrΓ­guez 85 Jan 02, 2023
Single Shot Text Detector with Regional Attention

Single Shot Text Detector with Regional Attention Introduction SSTD is initially described in our ICCV 2017 spotlight paper. A third-party implementat

Pan He 215 Dec 07, 2022
Recognizing cropped text in natural images.

ASTER: Attentional Scene Text Recognizer with Flexible Rectification ASTER is an accurate scene text recognizer with flexible rectification mechanism.

Baoguang Shi 681 Jan 02, 2023
Demo processor to illustrate OCR-D Python API

ocrd_vandalize/ Demo processor to illustrate the OCR-D/core Python API Description :TODO: write docs :) Installation From PyPI pip3 install ocrd_vanda

Konstantin Baierer 5 May 05, 2022
A little but useful tool to explore OCR data extracted with `pytesseract` and `opencv`

Screenshot OCR Tool Extracting data from screen time screenshots in iOS and Android. We are exploring 3 options: Simple OCR with no text position usin

Gabriele Marini 1 Dec 07, 2021
Pixie - A full-featured 2D graphics library for Python

Pixie - A full-featured 2D graphics library for Python Pixie is a 2D graphics library similar to Cairo and Skia. pip install pixie-python Features: Ty

treeform 65 Dec 30, 2022