Get Landsat surface reflectance time-series from google earth engine

Overview

geextract

Google Earth Engine data extraction tool. Quickly obtain Landsat multispectral time-series for exploratory analysis and algorithm testing

Online documentation available at https://loicdtx.github.io/landsat-extract-gee

https://coveralls.io/repos/github/loicdtx/landsat-extract-gee/badge.svg?branch=master https://travis-ci.org/loicdtx/landsat-extract-gee.svg?branch=master

Introduction

A python library (API + command lines) to extract Landsat time-series from the Google Earth Engine platform. Can query single pixels or spatially aggregated values over polygons. When used via the command line, extracted time-series are written to a sqlite database.

The idea is to provide quick access to Landsat time-series for exploratory analysis or algorithm testing. Instead of downloading the whole stack of Landsat scenes, preparing the data locally and extracting the time-series of interest, which may take several days, geextract allows to get time-series in a few seconds.

Compatible with python 2.7 and 3.

Usage

API

The principal function of the API is ts_extract

from geextract import ts_extract
from datetime import datetime

# Extract a Landsat 7 time-series for a 500m radius circular buffer around
# a location in Yucatan
lon = -89.8107197
lat = 20.4159611
LE7_dict_list = ts_extract(lon=lon, lat=lat, sensor='LE7',
                           start=datetime(1999, 1, 1), radius=500)

Command line

geextract comes with two command lines, for extracting Landsat time-series directly from the command line.

  • gee_extract.py: Extract a Landsat multispectral time-series for a single site. Extracted data are automatically added to a sqlite database.
  • gee_extract_batch.py: Batch order Landsat multispectral time-series for multiple locations.
gee_extract.py --help

# Extract all the LT5 bands for a location in Yucatan for the entire Landsat period, with a 500m radius
gee_extract.py -s LT5 -b 1980-01-01 -lon -89.8107 -lat 20.4159 -r 500 -db /tmp/gee_db.sqlite -site uxmal -table col_1
gee_extract.py -s LE7 -b 1980-01-01 -lon -89.8107 -lat 20.4159 -r 500 -db /tmp/gee_db.sqlite -site uxmal -table col_1
gee_extract.py -s LC8 -b 1980-01-01 -lon -89.8107 -lat 20.4159 -r 500 -db /tmp/gee_db.sqlite -site uxmal -table col_1
gee_extract_batch.py --help

# Extract all the LC8 bands in a 500 meters for two locations between 2012 and now
echo "4.7174,44.7814,rompon\n-149.4260,-17.6509,tahiti" > site_list.txt
gee_extract_batch.py site_list.txt -b 1984-01-01 -s LT5 -r 500 -db /tmp/gee_db.sqlite -table landsat_ts
gee_extract_batch.py site_list.txt -b 1984-01-01 -s LE7 -r 500 -db /tmp/gee_db.sqlite -table landsat_ts
gee_extract_batch.py site_list.txt -b 1984-01-01 -s LC8 -r 500 -db /tmp/gee_db.sqlite -table landsat_ts

https://github.com/loicdtx/landsat-extract-gee/raw/master/docs/figs/multispectral_uxmal.png

Installation

You must have a Google Earth Engine account to use the package.

Then, in a vitual environment run:

pip install geextract
earthengine authenticate

This will open a google authentication page in your browser, and will give you an authentication token to paste back in the terminal.

You can check that the authentication process was successful by running.

python -c "import ee; ee.Initialize()"

If nothing happens... it's working.

Benchmark

A quick benchmark of the extraction speed, using a 500 m buffer.

import time
from datetime import datetime
from pprint import pprint
import geextract

lon = -89.8107197
lat = 20.4159611

for sensor in ['LT5', 'LE7', 'LT4', 'LC8']:
    start = time.time()
    out = geextract.ts_extract(lon=lon, lat=lat, sensor=sensor, start=datetime(1980, 1, 1, 0, 0),
                               end=datetime.today(), radius=500)
    end = time.time()

    pprint('%s. Extracted %d records in %.1f seconds' % (sensor, len(out), end - start))
# 'LT5. Extracted 142 records in 1.9 seconds'
# 'LE7. Extracted 249 records in 5.8 seconds'
# 'LT4. Extracted 7 records in 1.0 seconds'
# 'LC8. Extracted 72 records in 2.4 seconds'
Owner
Loïc Dutrieux
I'm a Geo-Spatial specialist with a PhD in satellite remote sensing. Data lover, tool builder and problem solver.
Loïc Dutrieux
gjf: A tool for fixing invalid GeoJSON objects

gjf: A tool for fixing invalid GeoJSON objects The goal of this tool is to make it as easy as possible to fix invalid GeoJSON objects through Python o

Yazeed Almuqwishi 91 Dec 06, 2022
Digital Earth Australia notebooks and tools repository

Repository for Digital Earth Australia Jupyter Notebooks: tools and workflows for geospatial analysis with Open Data Cube and xarray

Geoscience Australia 335 Dec 24, 2022
Google Maps keeps old satellite imagery around for a while – this tool collects what's available for a user-specified region in the form of a GIF.

google-maps-at-88-mph The folks maintaining Google Maps regularly update the satellite imagery it serves its users, but outdated versions of the image

Noah Doersing 111 Sep 27, 2022
Streamlit Component for rendering Folium maps

streamlit-folium This Streamlit Component is a work-in-progress to determine what functionality is desirable for a Folium and Streamlit integration. C

Randy Zwitch 224 Dec 30, 2022
Using SQLAlchemy with spatial databases

GeoAlchemy GIS Support for SQLAlchemy. Introduction GeoAlchemy is an extension of SQLAlchemy. It provides support for Geospatial data types at the ORM

109 Dec 01, 2022
Tools for the extraction of OpenStreetMap street network data

OSMnet Tools for the extraction of OpenStreetMap (OSM) street network data. Intended to be used in tandem with Pandana and UrbanAccess libraries to ex

Urban Data Science Toolkit 47 Sep 21, 2022
A Python interface between Earth Engine and xarray

eexarray A Python interface between Earth Engine and xarray Description eexarray was built to make processing gridded, mesoscale time series data quic

Aaron Zuspan 159 Dec 23, 2022
EOReader is a multi-satellite reader allowing you to open optical and SAR data.

Remote-sensing opensource python library reading optical and SAR sensors, loading and stacking bands, clouds, DEM and index.

ICube-SERTIT 152 Dec 30, 2022
Cloud Optimized GeoTIFF creation and validation plugin for rasterio

rio-cogeo Cloud Optimized GeoTIFF (COG) creation and validation plugin for Rasterio. Documentation: https://cogeotiff.github.io/rio-cogeo/ Source Code

216 Dec 31, 2022
Asynchronous Client for the worlds fastest in-memory geo-database Tile38

This is an asynchonous Python client for Tile38 that allows for fast and easy interaction with the worlds fastest in-memory geodatabase Tile38.

Ben 53 Dec 29, 2022
Calculate & view the trajectory and live position of any earth-orbiting satellite

satellite-visualization A cross-platform application to calculate & view the trajectory and live position of any earth-orbiting satellite in 3D. This

Space Technology and Astronomy Cell - Open Source Society 3 Jan 08, 2022
A simple reverse geocoder that resolves a location to a country

Reverse Geocoder This repository holds a small web service that performs reverse geocoding to determine whether a user specified location is within th

4 Dec 25, 2021
Using Global fishing watch's data to build a machine learning model that can identify illegal fishing and poaching activities through satellite and geo-location data.

Using Global fishing watch's data to build a machine learning model that can identify illegal fishing and poaching activities through satellite and geo-location data.

Ayush Mishra 3 May 06, 2022
Python script that can be used to generate latitude/longitude coordinates for GOES-16 full-disk extent.

goes-latlon Python script that can be used to generate latitude/longitude coordinates for GOES-16 full-disk extent. 🌎 🛰️ The grid files can be acces

Douglas Uba 3 Apr 06, 2022
python toolbox for visualizing geographical data and making maps

geoplotlib is a python toolbox for visualizing geographical data and making maps data = read_csv('data/bus.csv') geoplotlib.dot(data) geoplotlib.show(

Andrea Cuttone 976 Dec 11, 2022
Bacon - Band-limited Coordinate Networks for Multiscale Scene Representation

BACON: Band-limited Coordinate Networks for Multiscale Scene Representation Project Page | Video | Paper Official PyTorch implementation of BACON. BAC

Stanford Computational Imaging Lab 144 Dec 29, 2022
A bot that tweets info and location map for new bicycle parking added to OpenStreetMap within a GeoJSON boundary.

Bike parking tweepy bot app A twitter bot app that searches for bicycle parking added to OpenStreetMap. Relies on AWS Lambda/S3, Python3, Tweepy, Flas

Angelo Trivisonno 1 Dec 19, 2021
ArcGIS Python Toolbox for WhiteboxTools

WhiteboxTools-ArcGIS ArcGIS Python Toolbox for WhiteboxTools. This repository is related to the ArcGIS Python Toolbox for WhiteboxTools, which is an A

Qiusheng Wu 190 Dec 30, 2022
h3-js provides a JavaScript version of H3, a hexagon-based geospatial indexing system.

h3-js The h3-js library provides a pure-JavaScript version of the H3 Core Library, a hexagon-based geographic grid system. It can be used either in No

Uber Open Source 648 Jan 07, 2023
Google maps for Jupyter notebooks

gmaps gmaps is a plugin for including interactive Google maps in the IPython Notebook. Let's plot a heatmap of taxi pickups in San Francisco: import g

Pascal Bugnion 747 Dec 19, 2022