A music comments dataset, containing 39,051 comments for 27,384 songs.

Overview

Music Comments Dataset

License: AGPL v3

A music comments dataset, containing 39,051 comments for 27,384 songs.

For academic research use only.

Introduction

This dataset is part of a recent multimodal deep learning project on music and natural language that I have been working on. The complete dataset contains 30s of audio, metadata, lyrics, and comments for each piece of data. This dataset contains only the lyrics and comments sections.

In the current stage, it only contains 39,051 comments for 27,384 songs (for dataset_summarization_positive.pkl) and can be larger if necessary (for other files).

Because the audio data is much less than the review data, I kept only this part as the dataset in order to ensure that music and reviews appear in pairs.

Here is a data sample:

Lyrics: Come up to meet you, tell you I'm sorry; You don't know how lovely you are; I had to find you, tell you I need you; ; Tell you I set you apart; Tell me your secrets and ask me your questions; Oh, let's go back to the start; ; Running in circles, coming up tails; Heads on a science apart; Nobody said it was easy; ; It's such a shame for us to part; Nobody said it was easy; No one ever said it would be this hard; ; Oh, take me back to the start; I was just guessing at numbers and figures; Pulling the puzzles apart; Questions of science, science and progress; ; Do not speak as loud as my heart; ; But tell me you love me, come back and haunt me; Oh and I rush to the start; Running in circles, chasing our tails; ; Coming back as we are; Nobody said it was easy; Oh, it's such a shame for us to part; Nobody said it was easy; No one ever said it would be so hard; I'm going back to the start; Oh ooh, ooh ooh ooh ooh; Ah ooh, ooh ooh ooh ooh; Oh ooh, ooh ooh ooh ooh; Oh ooh, ooh ooh ooh ooh

Ground Truth: The song is like poetry with many meanings to be sifted out applicable to many people in many different relationship situations. I find the lyrics touch me as if specifically written regarding my own situations at times. The following meaning I describe in no way reflects any situation I have ever had to face.

Data Source and Data Preprocessing

The audio and metadata files are from the Music4All Dataset, which I cannot make available directly due to agreeement restrictions, so anyone who would like to request that dataset can contact the authors directly.

The review data is mainly from songmeanings.com. I have done some data pre-processing to make the comment data more concise.

The first is the summarization method. I use the generative summarisation method to remove useless information from the comments (See Figure 1).

The second is the positive method. Each original comment carries a rating, which relates to the degree to which the comment itself is agreed by the community. The summarization token means that I only pick comments which have ratings > 0. The not_negative tokens means that the comments have ratings >= 0.

Folder Structure

.
├── README.md
├── codes
│   └── data.py
└── dataset
    ├── dataset_summarization_positive.pkl
    ├── dataset_summarization_not_negative.pkl
    ├── dataset_summarization.pkl
    ├── dataset_positive.pkl
    ├── dataset_not_negative.pkl
    └── dataset.pkl

In the data.py file, I have provided a PyTorch Dataset class to use.

Data Format

the .pkl file is an object List. It can be loaded and read using LyricsCommentsDatasetPsuedo class in data.py.

Each data contains two attributes: lyrics and comment. A lyric may correspond to more than one comment, so I broadcast the lyrics to ensure that each comment has a corresponding lyric.

Citation

@article{zhanggenerating,
  title={Generating Comments from Music and Lyrics},
  author={Zhang, Yixiao and Dixon, Simon},
  year={2021}
}
Owner
Zhang Yixiao
AI and Music PhD Student @c4dm
Zhang Yixiao
A Transformer Implementation that is easy to understand and customizable.

Simple Transformer I've written a series of articles on the transformer architecture and language models on Medium. This repository contains an implem

Naoki Shibuya 4 Jan 20, 2022
DANeS is an open-source E-newspaper dataset by collaboration between DATASET JSC (dataset.vn) and AIV Group (aivgroup.vn)

DANeS - Open-source E-newspaper dataset Source: Technology vector created by macrovector - www.freepik.com. DANeS is an open-source E-newspaper datase

DATASET .JSC 64 Aug 17, 2022
Test finetuning of XLSR (multilingual wav2vec 2.0) for other speech classification tasks

wav2vec_finetune Test finetuning of XLSR (multilingual wav2vec 2.0) for other speech classification tasks Initial test: gender recognition on this dat

8 Aug 11, 2022
This repository contains (not all) code from my project on Named Entity Recognition in philosophical text

NERphilosophy 👋 Welcome to the github repository of my BsC thesis. This repository contains (not all) code from my project on Named Entity Recognitio

Ruben 1 Jan 27, 2022
Sequence modeling benchmarks and temporal convolutional networks

Sequence Modeling Benchmarks and Temporal Convolutional Networks (TCN) This repository contains the experiments done in the work An Empirical Evaluati

CMU Locus Lab 3.5k Jan 03, 2023
🦅 Pretrained BigBird Model for Korean (up to 4096 tokens)

Pretrained BigBird Model for Korean What is BigBird • How to Use • Pretraining • Evaluation Result • Docs • Citation 한국어 | English What is BigBird? Bi

Jangwon Park 183 Dec 14, 2022
Concept Modeling: Topic Modeling on Images and Text

Concept is a technique that leverages CLIP and BERTopic-based techniques to perform Concept Modeling on images.

Maarten Grootendorst 120 Dec 27, 2022
Adversarial Examples for Extreme Multilabel Text Classification

Adversarial Examples for Extreme Multilabel Text Classification The code is adapted from the source codes of BERT-ATTACK [1], APLC_XLNet [2], and Atte

1 May 14, 2022
A single model that parses Universal Dependencies across 75 languages.

A single model that parses Universal Dependencies across 75 languages. Given a sentence, jointly predicts part-of-speech tags, morphology tags, lemmas, and dependency trees.

Dan Kondratyuk 189 Nov 29, 2022
NLP-Project - Used an API to scrape 2000 reddit posts, then used NLP analysis and created a classification model to mixed succcess

Project 3: Web APIs & NLP Problem Statement How do r/Libertarian and r/Neoliberal differ on Biden post-inaguration? The goal of the project is to see

Adam Muhammad Klesc 2 Mar 29, 2022
Fake Shakespearean Text Generator

Fake Shakespearean Text Generator This project contains an impelementation of stateful Char-RNN model to generate fake shakespearean texts. Files and

Recep YILDIRIM 1 Feb 15, 2022
This project aims to conduct a text information retrieval and text mining on medical research publication regarding Covid19 - treatments and vaccinations.

Project: Text Analysis - This project aims to conduct a text information retrieval and text mining on medical research publication regarding Covid19 -

1 Mar 14, 2022
Pervasive Attention: 2D Convolutional Networks for Sequence-to-Sequence Prediction

This is a fork of Fairseq(-py) with implementations of the following models: Pervasive Attention - 2D Convolutional Neural Networks for Sequence-to-Se

Maha 490 Dec 15, 2022
PyTorch implementation and pretrained models for XCiT models. See XCiT: Cross-Covariance Image Transformer

Cross-Covariance Image Transformer (XCiT) PyTorch implementation and pretrained models for XCiT models. See XCiT: Cross-Covariance Image Transformer L

Facebook Research 605 Jan 02, 2023
This repository describes our reproducible framework for assessing self-supervised representation learning from speech

LeBenchmark: a reproducible framework for assessing SSL from speech Self-Supervised Learning (SSL) using huge unlabeled data has been successfully exp

49 Aug 24, 2022
This is the code for the EMNLP 2021 paper AEDA: An Easier Data Augmentation Technique for Text Classification

The baseline code is for EDA: Easy Data Augmentation techniques for boosting performance on text classification tasks

Akbar Karimi 81 Dec 09, 2022
Text Analysis & Topic Extraction on Android App user reviews

AndroidApp_TextAnalysis Hi, there! This is code archive for Text Analysis and Topic Extraction from user_reviews of Android App. Dataset Source : http

Fitrie Ratnasari 1 Feb 14, 2022
Différents programmes créant une interface graphique a l'aide de Tkinter pour simplifier la vie des étudiants.

GP211-Grand-Projet Ce repertoire contient tout les programmes nécessaires au bon fonctionnement de notre projet-logiciel. Cette interface graphique es

1 Dec 21, 2021
Easy to start. Use deep nerual network to predict the sentiment of movie review.

Easy to start. Use deep nerual network to predict the sentiment of movie review. Various methods, word2vec, tf-idf and df to generate text vectors. Various models including lstm and cov1d. Achieve f1

1 Nov 19, 2021
KoBERTopic은 BERTopic을 한국어 데이터에 적용할 수 있도록 토크나이저와 BERT를 수정한 코드입니다.

KoBERTopic 모델 소개 KoBERTopic은 BERTopic을 한국어 데이터에 적용할 수 있도록 토크나이저와 BERT를 수정했습니다. 기존 BERTopic : https://github.com/MaartenGr/BERTopic/tree/05a6790b21009d

Won Joon Yoo 26 Jan 03, 2023