A music comments dataset, containing 39,051 comments for 27,384 songs.

Overview

Music Comments Dataset

License: AGPL v3

A music comments dataset, containing 39,051 comments for 27,384 songs.

For academic research use only.

Introduction

This dataset is part of a recent multimodal deep learning project on music and natural language that I have been working on. The complete dataset contains 30s of audio, metadata, lyrics, and comments for each piece of data. This dataset contains only the lyrics and comments sections.

In the current stage, it only contains 39,051 comments for 27,384 songs (for dataset_summarization_positive.pkl) and can be larger if necessary (for other files).

Because the audio data is much less than the review data, I kept only this part as the dataset in order to ensure that music and reviews appear in pairs.

Here is a data sample:

Lyrics: Come up to meet you, tell you I'm sorry; You don't know how lovely you are; I had to find you, tell you I need you; ; Tell you I set you apart; Tell me your secrets and ask me your questions; Oh, let's go back to the start; ; Running in circles, coming up tails; Heads on a science apart; Nobody said it was easy; ; It's such a shame for us to part; Nobody said it was easy; No one ever said it would be this hard; ; Oh, take me back to the start; I was just guessing at numbers and figures; Pulling the puzzles apart; Questions of science, science and progress; ; Do not speak as loud as my heart; ; But tell me you love me, come back and haunt me; Oh and I rush to the start; Running in circles, chasing our tails; ; Coming back as we are; Nobody said it was easy; Oh, it's such a shame for us to part; Nobody said it was easy; No one ever said it would be so hard; I'm going back to the start; Oh ooh, ooh ooh ooh ooh; Ah ooh, ooh ooh ooh ooh; Oh ooh, ooh ooh ooh ooh; Oh ooh, ooh ooh ooh ooh

Ground Truth: The song is like poetry with many meanings to be sifted out applicable to many people in many different relationship situations. I find the lyrics touch me as if specifically written regarding my own situations at times. The following meaning I describe in no way reflects any situation I have ever had to face.

Data Source and Data Preprocessing

The audio and metadata files are from the Music4All Dataset, which I cannot make available directly due to agreeement restrictions, so anyone who would like to request that dataset can contact the authors directly.

The review data is mainly from songmeanings.com. I have done some data pre-processing to make the comment data more concise.

The first is the summarization method. I use the generative summarisation method to remove useless information from the comments (See Figure 1).

The second is the positive method. Each original comment carries a rating, which relates to the degree to which the comment itself is agreed by the community. The summarization token means that I only pick comments which have ratings > 0. The not_negative tokens means that the comments have ratings >= 0.

Folder Structure

.
├── README.md
├── codes
│   └── data.py
└── dataset
    ├── dataset_summarization_positive.pkl
    ├── dataset_summarization_not_negative.pkl
    ├── dataset_summarization.pkl
    ├── dataset_positive.pkl
    ├── dataset_not_negative.pkl
    └── dataset.pkl

In the data.py file, I have provided a PyTorch Dataset class to use.

Data Format

the .pkl file is an object List. It can be loaded and read using LyricsCommentsDatasetPsuedo class in data.py.

Each data contains two attributes: lyrics and comment. A lyric may correspond to more than one comment, so I broadcast the lyrics to ensure that each comment has a corresponding lyric.

Citation

@article{zhanggenerating,
  title={Generating Comments from Music and Lyrics},
  author={Zhang, Yixiao and Dixon, Simon},
  year={2021}
}
Owner
Zhang Yixiao
AI and Music PhD Student @c4dm
Zhang Yixiao
Wind Speed Prediction using LSTMs in PyTorch

Implementation of Deep-Forecast using PyTorch Deep Forecast: Deep Learning-based Spatio-Temporal Forecasting Adapted from original implementation Setu

Onur Kaplan 151 Dec 14, 2022
🚀Clone a voice in 5 seconds to generate arbitrary speech in real-time

English | 中文 Features 🌍 Chinese supported mandarin and tested with multiple datasets: aidatatang_200zh, magicdata, aishell3, data_aishell, and etc. ?

Vega 25.6k Dec 31, 2022
🐍💯pySBD (Python Sentence Boundary Disambiguation) is a rule-based sentence boundary detection that works out-of-the-box.

pySBD: Python Sentence Boundary Disambiguation (SBD) pySBD - python Sentence Boundary Disambiguation (SBD) - is a rule-based sentence boundary detecti

Nipun Sadvilkar 549 Jan 06, 2023
Continuously update some NLP practice based on different tasks.

NLP_practice We will continuously update some NLP practice based on different tasks. prerequisites Software pytorch = 1.10 torchtext = 0.11.0 sklear

0 Jan 05, 2022
This is my reading list for my PhD in AI, NLP, Deep Learning and more.

This is my reading list for my PhD in AI, NLP, Deep Learning and more.

Zhong Peixiang 156 Dec 21, 2022
pyupbit 라이브러리를 활용하여 upbit에서 비트코인을 자동매매하는 코드입니다. 조코딩 유튜브 채널에서 자세한 강의 영상을 보실 수 있습니다.

파이썬 비트코인 투자 자동화 강의 코드 by 유튜브 조코딩 채널 pyupbit 라이브러리를 활용하여 upbit 거래소에서 비트코인 자동매매를 하는 코드입니다. 파일 구성 test.py : 잔고 조회 (1강) backtest.py : 백테스팅 코드 (2강) bestK.p

조코딩 JoCoding 186 Dec 29, 2022
AI-Broad-casting - AI Broad casting with python

Basic Code 1. Use The Code Configuration Environment conda create -n code_base p

Biterm Topic Model (BTM): modeling topics in short texts

Biterm Topic Model Bitermplus implements Biterm topic model for short texts introduced by Xiaohui Yan, Jiafeng Guo, Yanyan Lan, and Xueqi Cheng. Actua

Maksim Terpilowski 49 Dec 30, 2022
[AAAI 21] Curriculum Labeling: Revisiting Pseudo-Labeling for Semi-Supervised Learning

◥ Curriculum Labeling ◣ Revisiting Pseudo-Labeling for Semi-Supervised Learning Paola Cascante-Bonilla, Fuwen Tan, Yanjun Qi, Vicente Ordonez. In the

UVA Computer Vision 113 Dec 15, 2022
Silero Models: pre-trained speech-to-text, text-to-speech models and benchmarks made embarrassingly simple

Silero Models: pre-trained speech-to-text, text-to-speech models and benchmarks made embarrassingly simple

Alexander Veysov 3.2k Dec 31, 2022
Study German declensions (dER nettE Mann, ein nettER Mann, mit dEM nettEN Mann, ohne dEN nettEN Mann ...) Generate as many exercises as you want using the incredible power of SPACY!

Study German declensions (dER nettE Mann, ein nettER Mann, mit dEM nettEN Mann, ohne dEN nettEN Mann ...) Generate as many exercises as you want using the incredible power of SPACY!

Hans Alemão 4 Jul 20, 2022
Deal or No Deal? End-to-End Learning for Negotiation Dialogues

Introduction This is a PyTorch implementation of the following research papers: (1) Hierarchical Text Generation and Planning for Strategic Dialogue (

Facebook Research 1.4k Dec 29, 2022
An open source library for deep learning end-to-end dialog systems and chatbots.

DeepPavlov is an open-source conversational AI library built on TensorFlow, Keras and PyTorch. DeepPavlov is designed for development of production re

Neural Networks and Deep Learning lab, MIPT 6k Dec 31, 2022
A PyTorch-based model pruning toolkit for pre-trained language models

English | 中文说明 TextPruner是一个为预训练语言模型设计的模型裁剪工具包,通过轻量、快速的裁剪方法对模型进行结构化剪枝,从而实现压缩模型体积、提升模型速度。 其他相关资源: 知识蒸馏工具TextBrewer:https://github.com/airaria/TextBrewe

Ziqing Yang 231 Jan 08, 2023
BARTpho: Pre-trained Sequence-to-Sequence Models for Vietnamese

Table of contents Introduction Using BARTpho with fairseq Using BARTpho with transformers Notes BARTpho: Pre-trained Sequence-to-Sequence Models for V

VinAI Research 58 Dec 23, 2022
PUA Programming Language written in Python.

pua-lang PUA Programming Language written in Python. Installation git clone https://github.com/zhaoyang97/pua-lang.git cd pua-lang pip install . Try

zy 4 Feb 19, 2022
Experiments in converting wikidata to ftm

FollowTheMoney / Wikidata mappings This repo will contain tools for converting Wikidata entities into FtM schema. Prefixes: https://www.mediawiki.org/

Friedrich Lindenberg 2 Nov 12, 2021
The Easy-to-use Dialogue Response Selection Toolkit for Researchers

The Easy-to-use Dialogue Response Selection Toolkit for Researchers

GMFTBY 32 Nov 13, 2022
Simple, Fast, Powerful and Easily extensible python package for extracting patterns from text, with over than 60 predefined Regular Expressions.

patterns-finder Simple, Fast, Powerful and Easily extensible python package for extracting patterns from text, with over than 60 predefined Regular Ex

22 Dec 19, 2022
2021海华AI挑战赛·中文阅读理解·技术组·第三名

文字是人类用以记录和表达的最基本工具,也是信息传播的重要媒介。透过文字与符号,我们可以追寻人类文明的起源,可以传播知识与经验,读懂文字是认识与了解的第一步。对于人工智能而言,它的核心问题之一就是认知,而认知的核心则是语义理解。

21 Dec 26, 2022