A music comments dataset, containing 39,051 comments for 27,384 songs.

Overview

Music Comments Dataset

License: AGPL v3

A music comments dataset, containing 39,051 comments for 27,384 songs.

For academic research use only.

Introduction

This dataset is part of a recent multimodal deep learning project on music and natural language that I have been working on. The complete dataset contains 30s of audio, metadata, lyrics, and comments for each piece of data. This dataset contains only the lyrics and comments sections.

In the current stage, it only contains 39,051 comments for 27,384 songs (for dataset_summarization_positive.pkl) and can be larger if necessary (for other files).

Because the audio data is much less than the review data, I kept only this part as the dataset in order to ensure that music and reviews appear in pairs.

Here is a data sample:

Lyrics: Come up to meet you, tell you I'm sorry; You don't know how lovely you are; I had to find you, tell you I need you; ; Tell you I set you apart; Tell me your secrets and ask me your questions; Oh, let's go back to the start; ; Running in circles, coming up tails; Heads on a science apart; Nobody said it was easy; ; It's such a shame for us to part; Nobody said it was easy; No one ever said it would be this hard; ; Oh, take me back to the start; I was just guessing at numbers and figures; Pulling the puzzles apart; Questions of science, science and progress; ; Do not speak as loud as my heart; ; But tell me you love me, come back and haunt me; Oh and I rush to the start; Running in circles, chasing our tails; ; Coming back as we are; Nobody said it was easy; Oh, it's such a shame for us to part; Nobody said it was easy; No one ever said it would be so hard; I'm going back to the start; Oh ooh, ooh ooh ooh ooh; Ah ooh, ooh ooh ooh ooh; Oh ooh, ooh ooh ooh ooh; Oh ooh, ooh ooh ooh ooh

Ground Truth: The song is like poetry with many meanings to be sifted out applicable to many people in many different relationship situations. I find the lyrics touch me as if specifically written regarding my own situations at times. The following meaning I describe in no way reflects any situation I have ever had to face.

Data Source and Data Preprocessing

The audio and metadata files are from the Music4All Dataset, which I cannot make available directly due to agreeement restrictions, so anyone who would like to request that dataset can contact the authors directly.

The review data is mainly from songmeanings.com. I have done some data pre-processing to make the comment data more concise.

The first is the summarization method. I use the generative summarisation method to remove useless information from the comments (See Figure 1).

The second is the positive method. Each original comment carries a rating, which relates to the degree to which the comment itself is agreed by the community. The summarization token means that I only pick comments which have ratings > 0. The not_negative tokens means that the comments have ratings >= 0.

Folder Structure

.
├── README.md
├── codes
│   └── data.py
└── dataset
    ├── dataset_summarization_positive.pkl
    ├── dataset_summarization_not_negative.pkl
    ├── dataset_summarization.pkl
    ├── dataset_positive.pkl
    ├── dataset_not_negative.pkl
    └── dataset.pkl

In the data.py file, I have provided a PyTorch Dataset class to use.

Data Format

the .pkl file is an object List. It can be loaded and read using LyricsCommentsDatasetPsuedo class in data.py.

Each data contains two attributes: lyrics and comment. A lyric may correspond to more than one comment, so I broadcast the lyrics to ensure that each comment has a corresponding lyric.

Citation

@article{zhanggenerating,
  title={Generating Comments from Music and Lyrics},
  author={Zhang, Yixiao and Dixon, Simon},
  year={2021}
}
Owner
Zhang Yixiao
AI and Music PhD Student @c4dm
Zhang Yixiao
TextFlint is a multilingual robustness evaluation platform for natural language processing tasks,

TextFlint is a multilingual robustness evaluation platform for natural language processing tasks, which unifies general text transformation, task-specific transformation, adversarial attack, sub-popu

TextFlint 587 Dec 20, 2022
Repositório do trabalho de introdução a NLP

Trabalho da disciplina de BI NLP Repositório do trabalho da disciplina Introdução a Processamento de Linguagem Natural da pós BI-Master da PUC-RIO. Eq

Leonardo Lins 1 Jan 18, 2022
a chinese segment base on crf

Genius Genius是一个开源的python中文分词组件,采用 CRF(Conditional Random Field)条件随机场算法。 Feature 支持python2.x、python3.x以及pypy2.x。 支持简单的pinyin分词 支持用户自定义break 支持用户自定义合并词

duanhongyi 237 Nov 04, 2022
pysentimiento: A Python toolkit for Sentiment Analysis and Social NLP tasks

A Python multilingual toolkit for Sentiment Analysis and Social NLP tasks

297 Dec 29, 2022
The SVO-Probes Dataset for Verb Understanding

The SVO-Probes Dataset for Verb Understanding This repository contains the SVO-Probes benchmark designed to probe for Subject, Verb, and Object unders

DeepMind 20 Nov 30, 2022
Py65 65816 - Add support for the 65C816 to py65

Add support for the 65C816 to py65 Py65 (https://github.com/mnaberez/py65) is a

4 Jan 04, 2023
Datasets of Automatic Keyphrase Extraction

This repository contains 20 annotated datasets of Automatic Keyphrase Extraction made available by the research community. Following are the datasets and the original papers that proposed them. If yo

LIAAD - Laboratory of Artificial Intelligence and Decision Support 163 Dec 23, 2022
ConvBERT: Improving BERT with Span-based Dynamic Convolution

ConvBERT Introduction In this repo, we introduce a new architecture ConvBERT for pre-training based language model. The code is tested on a V100 GPU.

YITUTech 237 Dec 10, 2022
ProtFeat is protein feature extraction tool that utilizes POSSUM and iFeature.

Description: ProtFeat is designed to extract the protein features by employing POSSUM and iFeature python-based tools. ProtFeat includes a total of 39

GOKHAN OZSARI 5 Dec 16, 2022
Contains the code and data for our #ICSE2022 paper titled as "CodeFill: Multi-token Code Completion by Jointly Learning from Structure and Naming Sequences"

CodeFill This repository contains the code for our paper titled as "CodeFill: Multi-token Code Completion by Jointly Learning from Structure and Namin

Software Analytics Lab 11 Oct 31, 2022
API for the GPT-J language model 🦜. Including a FastAPI backend and a streamlit frontend

gpt-j-api 🦜 An API to interact with the GPT-J language model. You can use and test the model in two different ways: Streamlit web app at http://api.v

Víctor Gallego 276 Dec 31, 2022
MiCECo - Misskey Custom Emoji Counter

MiCECo Misskey Custom Emoji Counter Introduction This little script counts custo

7 Dec 25, 2022
Awesome Treasure of Transformers Models Collection

💁 Awesome Treasure of Transformers Models for Natural Language processing contains papers, videos, blogs, official repo along with colab Notebooks. 🛫☑️

Ashish Patel 577 Jan 07, 2023
Code for the paper "Are Sixteen Heads Really Better than One?"

Are Sixteen Heads Really Better than One? This repository contains code to reproduce the experiments in our paper Are Sixteen Heads Really Better than

Paul Michel 143 Dec 14, 2022
An implementation of model parallel GPT-2 and GPT-3-style models using the mesh-tensorflow library.

GPT Neo 🎉 1T or bust my dudes 🎉 An implementation of model & data parallel GPT3-like models using the mesh-tensorflow library. If you're just here t

EleutherAI 6.7k Dec 28, 2022
A linter to manage all your python exceptions and try/except blocks (limited only for those who like dinosaurs).

Manage your exceptions in Python like a PRO Currently in BETA. Inspired by this blog post. I shared the building process of this tool here. “For those

Guilherme Latrova 353 Dec 31, 2022
Free and Open Source Machine Translation API. 100% self-hosted, offline capable and easy to setup.

LibreTranslate Try it online! | API Docs | Community Forum Free and Open Source Machine Translation API, entirely self-hosted. Unlike other APIs, it d

3.4k Dec 27, 2022
Beyond the Imitation Game collaborative benchmark for enormous language models

BIG-bench 🪑 The Beyond the Imitation Game Benchmark (BIG-bench) will be a collaborative benchmark intended to probe large language models, and extrap

Google 1.3k Jan 01, 2023
NLP and Text Generation Experiments in TensorFlow 2.x / 1.x

Code has been run on Google Colab, thanks Google for providing computational resources Contents Natural Language Processing(自然语言处理) Text Classificati

1.5k Nov 14, 2022
Training code for Korean multi-class sentiment analysis

KoSentimentAnalysis Bert implementation for the Korean multi-class sentiment analysis 왜 한국어 감정 다중분류 모델은 거의 없는 것일까?에서 시작된 프로젝트 Environment: Pytorch, Da

Donghoon Shin 3 Dec 02, 2022