Learn Blockchains by Building One, A simple Blockchain in Python using Flask as a micro web framework.

Overview

Blockchain

forthebadge forthebadge forthebadge

Learn Blockchains by Building One Yourself

Installation

  1. Make sure Python 3.6+ is installed.
  2. Install Flask Web Framework.
  3. Clone this repository
    $ git clone https://github.com/krvaibhaw/blockchain.git
  1. Change Directory
    $ cd blockchain
  1. Install requirements
    $ pip install requirements.txt
  1. Run the server:
    $ python blockchain.py 
  1. Head to the Web brouser and visit
    http://127.0.0.1:5000/

Introduction

Blockchain is a specific type of database. It differs from a typical database in the way it stores information; blockchains store data in blocks that are then chained together. As new data comes in it is entered into a fresh block. Once the block is filled with data it is chained onto the previous block, which makes the data chained together in chronological order. Different types of information can be stored on a blockchain but the most common use so far has been as a ledger for transactions.

What is Blockchain?

A blockchain is essentially a digital ledger of transactions that is duplicated and distributed across the entire network of computer systems on the blockchain. It is a growing list of records, called blocks, that are linked together using cryptography. Each block contains a cryptographic hash of the previous block, a timestamp, and transaction data (generally represented as a Merkle tree). The timestamp proves that the transaction data existed when the block was published in order to get into its hash.

As blocks each contain information about the block previous to it (by cryptographic hash of the previous block), they form a chain, with each additional block reinforcing the ones before it. Therefore, blockchains are resistant to modification of their data because once recorded, the data in any given block cannot be altered retroactively without altering all subsequent blocks.

How does it works?

Blockchains are typically managed by a peer-to-peer network for use as a publicly distributed ledger, where nodes collectively adhere to a protocol to communicate and validate new blocks. Although blockchain records are not unalterable as forks are possible, blockchains may be considered secure by design and exemplify a distributed computing system with high Byzantine fault tolerance.

Why Blockchain?

  • Immutable: Blockchains are resistant to modification of their data because once recorded, the data in any given block cannot be altered retroactively without altering all subsequent blocks.

  • Decentralized: It doesn’t have any governing authority or a single person looking after the framework. Rather a group of nodes maintains the network making it decentralized. It means :

      -> Transparency
      -> User Control
      -> Less Prone to Breakdown
      -> Less chance of Failure.
      -> No Third-Party
    
  • Enhanced Security: If someone wants to corrupt the network, he/she would have to alter every data stored on every node in the network. There could be millions and millions of people, where everyone has the same copy of the ledger.

  • Distributed Ledgers: The ledger on the network is maintained by all other users on the system. This distributed computational power across the computers to ensure a better outcome. It ensures :

      -> No Malicious Changes
      -> Ownership of Verification
      -> Quick Response
      -> Managership
      -> No Extra Favors
    
  • Consensus: The architecture is cleverly designed, and consensus algorithms are at the core of this architecture. The consensus is a decision-making process for the group of nodes active on the network. The consensus is responsible for the network being trustless. Nodes might not trust each other, but they can trust the algorithms that run at the core of it. That’s why every decision on the network is a winning scenario for the blockchain.

  • True Traceability: With blockchain, the supply chain becomes more transparent than ever, as compared to traditional supply chain, where it is hard to trace items that can lead to multiple problems, including theft, counterfeit, and loss of goods.

Understanding the Program

Firstly, we defined the structure of our block, which contains, block index, timestamp of when it has been created, proof of work, along with previous hash i.e., the hash of previous block. In real case seanario along with these there are other contents such as a body or transaction list, etc.

    def createblock(self, proof, prevhash):
        
        # Defining the structure of our block
        block = {'index': len(self.chain) + 1,
                 'timestamp': str(datetime.datetime.now()),
                 'proof': proof,
                 'prevhash': prevhash}

        # Establishing a cryptographic link
        self.chain.append(block)
        return block

The genesis block is the first block in any blockchain-based protocol. It is the basis on which additional blocks are added to form a chain of blocks, hence the term blockchain. This block is sometimes referred to Block 0. Every block in a blockchain stores a reference to the previous block. In the case of Genesis Block, there is no previous block for reference.

    def __init__(self):
        
        self.chain = []
        
        # Creating the Genesis Block
        self.createblock(proof = 1, prevhash = "0")

Proof of Work(PoW) is the original consensus algorithm in a blockchain network. The algorithm is used to confirm the transaction and creates a new block to the chain. In this algorithm, minors (a group of people) compete against each other to complete the transaction on the network. The process of competing against each other is called mining. As soon as miners successfully created a valid block, he gets rewarded.

    def proofofwork(self, prevproof):
        newproof = 1
        checkproof = False

        # Defining crypto puzzle for the miners and iterating until able to mine it 
        while checkproof is False:
            op = hashlib.sha256(str(newproof**2 - prevproof**5).encode()).hexdigest()
            
            if op[:5] == "00000":
                checkproof = True
            else:
                newproof += 1
        
        return newproof

Chain validation is an important part of the blockchain, it is used to validate weather tha blockchain is valid or not. There are two checks performed.

First check, for each block check if the previous hash field is equal to the hash of the previous block i.e. to verify the cryptographic link.

Second check, to check if the proof of work for each block is valid according to problem defined in proofofwork() function i.e. to check if the correct block is mined or not.

    def ischainvalid(self, chain):
        prevblock = chain[0]   # Initilized to Genesis block
        blockindex = 1         # Initilized to Next block

        while blockindex < len(chain):

            # First Check : To verify the cryptographic link
            
            currentblock = chain[blockindex]
            if currentblock['prevhash'] != self.hash(prevblock):
                return False

            # Second Check : To check if the correct block is mined or not

            prevproof = prevblock['proof']
            currentproof = currentblock['proof']
            op = hashlib.sha256(str(currentproof**2 - prevproof**5).encode()).hexdigest()
            
            if op[:5] != "00000":
                return True

            prevblock = currentblock
            blockindex += 1

        return True

Feel free to follow along the code provided along with mentioned comments for
better understanding of the project, if any issues feel free to reach me out.

Contributing

Contributions are welcome!
Please feel free to submit a Pull Request.

Owner
Vaibhaw
A passionate thinker, techno freak, comic lover, a curious computer engineering student. Machine Learning, Artificial Intelligence, Linux, Web Development.
Vaibhaw
a BTC mining program based on python3

BTC-Miner a BTC mining program based on python3 Our project refers to the nightminer project by ricmoo, which is written in Python2 (https://github.co

6 Jul 31, 2022
一个关于摩斯密码解密与加密的库 / A library about encoding and decoding Morse code.

Morsecoder By Lemonix 介绍 一个关于摩斯密码解密与加密的库

Heat Studio 10 Jun 28, 2022
Tron Wallet (TRX) Crack Finder With Python Just 64 Line

TRXGEN Tron Wallet Finder and Crack With Python Tron Wallet (TRX) Crack Finder With Python Just 64 Line My tools [pycharm + anaconda3 + python3.8 + vi

MMDRZA 6 Dec 18, 2022
Secure open-source password manager.

aes256_passwd_store This script securely encrypts or decrypts passwords on disk within a custom database file. It also features functionality to retri

14 Nov 15, 2022
An Etebase (EteSync 2.0) server so you can run your own.

Etebase - Encrypt Everything An Etebase (EteSync 2.0) server so you can run your own. Installation Requirements Etebase requires Python 3.7 or newer a

EteSync & Etebase 1.2k Dec 31, 2022
A simple key-based text encryption process that encrypts a string based in a list of characteres pairs.

Simple Cipher Encrypter About | New Features | Exemple | How To Use | License ℹ️ About A simple key-based text encryption process that encrypts a stri

Guilherme Farrel 1 Oct 21, 2021
An automated Risk Management Monitor Bot for ByBit cryptocurrencies exchange.

An automated Risk Management Monitor Bot for ByBit cryptocurrencies exchange that forces all open positions to adhere to a specific risk ratio, defined per asset. It supports USDT Perpetual, Inverse

Hadi Aladdin 25 Nov 27, 2022
How to setup a multi-client ethereum Eth1-Eth2 merge testnet

Mergenet tutorial Let's set up a local eth1-eth2 merge testnet! Preparing the setup environment In this tutorial, we use a series of scripts to genera

Diederik Loerakker 24 Jun 17, 2022
J. Brandon Walker 1 May 13, 2022
Audits Python environments and dependency trees for known vulnerabilities

pip-audit pip-audit is a prototype tool for scanning Python environments for packages with known vulnerabilities. It uses the Python Packaging Advisor

Trail of Bits 701 Dec 28, 2022
Gearbox-vyper-contracts - Auxillary contracts for the Gearbox Protocol written in Vyper

Gearbox Vyper Contracts Auxillary contracts for the Gearbox Protocol written in

Edward Amor 4 Jan 07, 2022
A python tool to track prices of various cryptocurrencies and alert

CryptoPriceTracker This is a tool to track prices of various cryptocurrencies and alert the user once the user defined maximum & minimum target is rea

1 Oct 01, 2021
Bitcoin Clipper malware made in Python.

a BTC Clipper or a "Bitcoin Clipper" is a type of malware designed to target cryptocurrency transactions.

Nightfall 96 Dec 30, 2022
bitcoin-ticker is a E-ink ticker that shows usefull information about bitcoin

bitcoin-ticker bitcoin-ticker is a E-ink ticker that shows usefull information about bitcoin. Due to the limited refresh lifetime, new information is

32 Nov 09, 2022
seno-blockchain is just a fork of Chia, designed to be efficient, decentralized, and secure

seno-blockchain https://seno.uno Seno is just a fork of Chia, designed to be efficient, decentralized, and secure. Here are some of the features and b

Denis Erygin 27 Jul 02, 2022
This demo is an on-chain NFT auction using smart contracts on the Algorand blockchain.

Algorand Auction Demo This demo is an on-chain NFT auction using smart contracts on the Algorand blockchain. Usage The file auction/operations.py prov

1 Jan 27, 2022
An BlockChain Based solution for storing the medical records

Blockchain-based Medical Records 📄 Abstract Blockchain has the ability to keep an incorruptible, decentralized, and transparent log of all patient da

Yuvraj Singh Deora 3 Jan 14, 2022
cairo_kernel is a simple Jupyter kernel for Cairo a smart contract programing language for STARKs.

cairo_kernel cairo_kernel is a simple Jupyter kernel for Cairo a smart contract programing language for STARKs. Installation Install virtualenv virtua

Ankit Chiplunkar 29 Sep 21, 2022
Simple encryption-at-rest with key rotation support for Python.

keyring Simple encryption-at-rest with key rotation support for Python. N.B.: keyring is not for encrypting passwords--for that, you should use someth

Dann Luciano 1 Dec 23, 2021
Generate simple encrypted messages!

Premio's Shift is a very simple text encryption, you can use it to send secret messages to your friends. Table of Content Table of Content How it work

Peterson Adami Candido 3 Aug 06, 2021