Learn Blockchains by Building One, A simple Blockchain in Python using Flask as a micro web framework.

Overview

Blockchain

forthebadge forthebadge forthebadge

Learn Blockchains by Building One Yourself

Installation

  1. Make sure Python 3.6+ is installed.
  2. Install Flask Web Framework.
  3. Clone this repository
    $ git clone https://github.com/krvaibhaw/blockchain.git
  1. Change Directory
    $ cd blockchain
  1. Install requirements
    $ pip install requirements.txt
  1. Run the server:
    $ python blockchain.py 
  1. Head to the Web brouser and visit
    http://127.0.0.1:5000/

Introduction

Blockchain is a specific type of database. It differs from a typical database in the way it stores information; blockchains store data in blocks that are then chained together. As new data comes in it is entered into a fresh block. Once the block is filled with data it is chained onto the previous block, which makes the data chained together in chronological order. Different types of information can be stored on a blockchain but the most common use so far has been as a ledger for transactions.

What is Blockchain?

A blockchain is essentially a digital ledger of transactions that is duplicated and distributed across the entire network of computer systems on the blockchain. It is a growing list of records, called blocks, that are linked together using cryptography. Each block contains a cryptographic hash of the previous block, a timestamp, and transaction data (generally represented as a Merkle tree). The timestamp proves that the transaction data existed when the block was published in order to get into its hash.

As blocks each contain information about the block previous to it (by cryptographic hash of the previous block), they form a chain, with each additional block reinforcing the ones before it. Therefore, blockchains are resistant to modification of their data because once recorded, the data in any given block cannot be altered retroactively without altering all subsequent blocks.

How does it works?

Blockchains are typically managed by a peer-to-peer network for use as a publicly distributed ledger, where nodes collectively adhere to a protocol to communicate and validate new blocks. Although blockchain records are not unalterable as forks are possible, blockchains may be considered secure by design and exemplify a distributed computing system with high Byzantine fault tolerance.

Why Blockchain?

  • Immutable: Blockchains are resistant to modification of their data because once recorded, the data in any given block cannot be altered retroactively without altering all subsequent blocks.

  • Decentralized: It doesn’t have any governing authority or a single person looking after the framework. Rather a group of nodes maintains the network making it decentralized. It means :

      -> Transparency
      -> User Control
      -> Less Prone to Breakdown
      -> Less chance of Failure.
      -> No Third-Party
    
  • Enhanced Security: If someone wants to corrupt the network, he/she would have to alter every data stored on every node in the network. There could be millions and millions of people, where everyone has the same copy of the ledger.

  • Distributed Ledgers: The ledger on the network is maintained by all other users on the system. This distributed computational power across the computers to ensure a better outcome. It ensures :

      -> No Malicious Changes
      -> Ownership of Verification
      -> Quick Response
      -> Managership
      -> No Extra Favors
    
  • Consensus: The architecture is cleverly designed, and consensus algorithms are at the core of this architecture. The consensus is a decision-making process for the group of nodes active on the network. The consensus is responsible for the network being trustless. Nodes might not trust each other, but they can trust the algorithms that run at the core of it. That’s why every decision on the network is a winning scenario for the blockchain.

  • True Traceability: With blockchain, the supply chain becomes more transparent than ever, as compared to traditional supply chain, where it is hard to trace items that can lead to multiple problems, including theft, counterfeit, and loss of goods.

Understanding the Program

Firstly, we defined the structure of our block, which contains, block index, timestamp of when it has been created, proof of work, along with previous hash i.e., the hash of previous block. In real case seanario along with these there are other contents such as a body or transaction list, etc.

    def createblock(self, proof, prevhash):
        
        # Defining the structure of our block
        block = {'index': len(self.chain) + 1,
                 'timestamp': str(datetime.datetime.now()),
                 'proof': proof,
                 'prevhash': prevhash}

        # Establishing a cryptographic link
        self.chain.append(block)
        return block

The genesis block is the first block in any blockchain-based protocol. It is the basis on which additional blocks are added to form a chain of blocks, hence the term blockchain. This block is sometimes referred to Block 0. Every block in a blockchain stores a reference to the previous block. In the case of Genesis Block, there is no previous block for reference.

    def __init__(self):
        
        self.chain = []
        
        # Creating the Genesis Block
        self.createblock(proof = 1, prevhash = "0")

Proof of Work(PoW) is the original consensus algorithm in a blockchain network. The algorithm is used to confirm the transaction and creates a new block to the chain. In this algorithm, minors (a group of people) compete against each other to complete the transaction on the network. The process of competing against each other is called mining. As soon as miners successfully created a valid block, he gets rewarded.

    def proofofwork(self, prevproof):
        newproof = 1
        checkproof = False

        # Defining crypto puzzle for the miners and iterating until able to mine it 
        while checkproof is False:
            op = hashlib.sha256(str(newproof**2 - prevproof**5).encode()).hexdigest()
            
            if op[:5] == "00000":
                checkproof = True
            else:
                newproof += 1
        
        return newproof

Chain validation is an important part of the blockchain, it is used to validate weather tha blockchain is valid or not. There are two checks performed.

First check, for each block check if the previous hash field is equal to the hash of the previous block i.e. to verify the cryptographic link.

Second check, to check if the proof of work for each block is valid according to problem defined in proofofwork() function i.e. to check if the correct block is mined or not.

    def ischainvalid(self, chain):
        prevblock = chain[0]   # Initilized to Genesis block
        blockindex = 1         # Initilized to Next block

        while blockindex < len(chain):

            # First Check : To verify the cryptographic link
            
            currentblock = chain[blockindex]
            if currentblock['prevhash'] != self.hash(prevblock):
                return False

            # Second Check : To check if the correct block is mined or not

            prevproof = prevblock['proof']
            currentproof = currentblock['proof']
            op = hashlib.sha256(str(currentproof**2 - prevproof**5).encode()).hexdigest()
            
            if op[:5] != "00000":
                return True

            prevblock = currentblock
            blockindex += 1

        return True

Feel free to follow along the code provided along with mentioned comments for
better understanding of the project, if any issues feel free to reach me out.

Contributing

Contributions are welcome!
Please feel free to submit a Pull Request.

Owner
Vaibhaw
A passionate thinker, techno freak, comic lover, a curious computer engineering student. Machine Learning, Artificial Intelligence, Linux, Web Development.
Vaibhaw
That Hash will name that hash type! Identify MD5, SHA256 and 300+ other hashes Comes with

Call for translators! We're looking for translators to help translate this spec for everyone! Read this documentation in the following languages 한국어 中

All Contributors 6.8k Jan 05, 2023
A Docker image for plotting and farming the Chia™ cryptocurrency on one computer or across many.

An easy-to-use WebUI for crypto plotting and farming. Offers Plotman, MadMax, Chiadog, Bladebit, Farmr, and Forktools in a Docker container. Supports Chia, Cactus, Chives, Flax, Flora, HDDCoin, Maize

Guy Davis 328 Jan 01, 2023
Random Password Generator With Python

Random_Password_Generator example output length

Mahdi Rostami Pooya 2 Dec 22, 2021
The leading native Python SSHv2 protocol library.

Paramiko Paramiko: Python SSH module Copyright: Copyright (c) 2009 Robey Pointer 8.1k Jan 08, 2023

Crypto Stats and Tweets Data Pipeline using Airflow

Crypto Stats and Tweets Data Pipeline using Airflow Introduction Project Overview This project was brought upon through Udacity's nanodegree program.

Matthew Greene 1 Nov 24, 2021
This is a webpage that contains login and signup page by which the password is stored using elliptic curve cryptography

LoginPage_using_Elliptic_curve_cryptography- This is a webpage that contains login and signup page by which the password is stored using elliptic curv

1 Oct 15, 2021
Vaulty - Encrypt/Decrypt with ChaCha20-Poly1305

Vaulty Encrypt/Decrypt with ChaCha20-Poly1305 Vaulty is an extremely lightweight encryption/decryption tool which uses ChaCha20-Poly1305 to provide 25

Chris Mason 1 Jul 04, 2022
Bitcoin Wallet Address Generator

Bitcoin Wallet Address Generator This is a simple Bitcoin non-deterministic wallet address generator coded in Python 3. It generates a Private Key in different formats (hex, wif and compressed wif) a

11 Dec 29, 2022
SHIBgreen is a cryptocurrency forked from Chia and uses the Proof of Space and Time consensus algorithm

SHIBgreen is a cryptocurrency forked from Chia and uses the Proof of Space and Time consensus algorithm

13 Jul 13, 2022
gcrypter: an encryption algorithm based on bytes and their correspondent numbers to encode strings

gcrypter: an encryption algorithm based on bytes and their correspondent numbers to encode strings

Nuninha-GC 1 Jan 10, 2022
Connects to an active BitCoin Peer and communicates in order to locate a specific block number (height)

BitCoin-Peer-Client Connects to an active BitCoin Peer, and locates a predetermined block number (height) by downloading block headers. Once required

Henry Song 1 Jan 16, 2022
Bot to trade crypto trading ranges

crypto-trading-bot Crypto bot with DCA or GRID trading strategy Sends notifictions to telegram chat Crypto bot with webhook feature which can be used

3 Jun 18, 2021
A simple web application with tools of cryptography, made with Flask and Cryptography.

Crypto Tools A web application made with Flask that allows the use of some cryptography tools like message digest, RSA key pair generation and a decip

Felipe Valentin 0 Jan 20, 2022
Implementation of Smart Batch Auction for NFT launches on Tezos.

NFT Smart Batch Auction Smart Batch Auctions are an improvement over the traditional first come first serve (FCFS) NFT drops. FCFS design has been in

Anshu Jalan 5 May 06, 2022
A repository for Algogenous Smart Contracts created on the Algorand Blockchain.

Smart Contacts Alogrand Smart Contracts using Choice Coin. Read Docs for how to implement Algogenous Smart Contracts for your own applications. Smart

Choice Coin 3 Dec 20, 2022
A tool that can encrypt python2 or python3 code with the given password and can reuse with that password

A tool that can encrypt python2 or python3 code with the given password and can reuse with that password

Md Rasel Bhuyan 3 Feb 28, 2022
Hide secret data within a digital image using good ol' terminal

pystego Hide secret data within a digital image using good ol' terminal Installation The recommended way for installing this package is using, python

Ayush Gupta 1 Jan 06, 2022
Simple one-time pad (OTP) encryption

Introduction What you will make In this resource you will learn how to create and use an encryption technique known as the one-time pad. This method o

Rabih ND 6 Nov 06, 2022
SSEPy: Implementation of searchable symmetric encryption in pure Python

SSEPy: Implementation of searchable symmetric encryption in pure Python Searchable symmetric encryption, one of the research hotspots in applied crypt

33 Dec 05, 2022
Electrum - Lightweight Vertcoin client

Electrum - Lightweight Vertcoin client Electrum-VTC is a rebase of upstream Electrum and pulls in updates regularly. Donate VTC to support this work:

Vertcoin 4 Oct 14, 2022