Simple encryption-at-rest with key rotation support for Python.

Related tags

Cryptographykeyringpy
Overview

keyring

Simple encryption-at-rest with key rotation support for Python.

keyring: Simple encryption-at-rest with key rotation support for Python.

N.B.: keyring is not for encrypting passwords--for that, you should use something like bcrypt. It's meant for encrypting sensitive data you will need to access in plain text (e.g. storing OAuth token from users). Passwords do not fall in that category.

This package is completely independent from any storage mechanisms; the goal is providing a few functions that could be easily integrated with any ORM.

Installation

Add package to your requirements.txt or:

pip install keyring

Usage

Encryption

By default, AES-128-CBC is the algorithm used for encryption. This algorithm uses 16 bytes keys, but you're required to use a key that's double the size because half of that keys will be used to generate the HMAC. The first 16 bytes will be used as the encryption key, and the last 16 bytes will be used to generate the HMAC.

Using random data base64-encoded is the recommended way. You can easily generate keys by using the following command:

$ dd if=/dev/urandom bs=32 count=1 2>/dev/null | openssl base64 -A
qUjOJFgZsZbTICsN0TMkKqUvSgObYxnkHDsazTqE5tM=

Include the result of this command in the value section of the key description in the keyring. Half this key is used for encryption, and half for the HMAC.

Key size

The key size depends on the algorithm being used. The key size should be double the size as half of it is used for HMAC computation.

  • aes-128-cbc: 16 bytes (encryption) + 16 bytes (HMAC).
  • aes-192-cbc: 24 bytes (encryption) + 24 bytes (HMAC).
  • aes-256-cbc: 32 bytes (encryption) + 32 bytes (HMAC).

About the encrypted message

Initialization vectors (IV) should be unpredictable and unique; ideally, they will be cryptographically random. They do not have to be secret: IVs are typically just added to ciphertext messages unencrypted. It may sound contradictory that something has to be unpredictable and unique, but does not have to be secret; it is important to remember that an attacker must not be able to predict ahead of time what a given IV will be.

With that in mind, keyring uses base64(hmac(unencrypted iv + encrypted message) + unencrypted iv + encrypted message) as the final message. If you're planning to migrate from other encryption mechanisms or read encrypted values from the database without using keyring, make sure you account for this. The HMAC is 32-bytes long and the IV is 16-bytes long.

Keyring

Keys are managed through a keyring--a short python Dictionary describing your encryption keys. The keyring must be a Dictionary object mapping numeric ids of the keys to the key values. A keyring must have at least one key. For example:

{
  "1": "uDiMcWVNTuz//naQ88sOcN+E40CyBRGzGTT7OkoBS6M=",
  "2": "VN8UXRVMNbIh9FWEFVde0q7GUA1SGOie1+FgAKlNYHc="
}

The id is used to track which key encrypted which piece of data; a key with a larger id is assumed to be newer. The value is the actual bytes of the encryption key.

Key Rotation

With keyring you can have multiple encryption keys at once and key rotation is fairly straightforward: if you add a key to the keyring with a higher id than any other key, that key will automatically be used for encryption when objects are either created or updated. Any keys that are no longer in use can be safely removed from the keyring.

It's extremely important that you save the keyring id returned by encrypt(); otherwise, you may not be able to decrypt values (you can always decrypt values if you still possess all encryption keys).

If you're using keyring to encrypt database columns, it's recommended to use a separated keyring for each table you're planning to encrypt: this allows an easier key rotation in case you need (e.g. key leaking).

N.B.: Keys are hardcoded on these examples, but you shouldn't do it on your code base. You can retrieve keyring from environment variables if you're deploying to Heroku and alike, or deploy a JSON file with your configuration management software (e.g. Ansible, Puppet, Chef, etc).

Basic usage of keyring

πŸ”’ Vco48O95YC4jqj44MheY8zFO2NLMPp/KILiUGbKxHvAwLd2/AN+zUG650CJzogttqnF1cGMFb//Idg4+bXoRMQ== #=> πŸ”‘ 1 #=> πŸ”Ž c39ec9729dbacd45cecd5ea9a60b15b50b0cc857 # STEP 2: Decrypted message using encryption key defined by keyring id. decrypted = encryptor.decrypt(encrypted, keyringId) print(f'βœ‰οΈ {decrypted}') #=> βœ‰οΈ super secret">
from keyring import Keyring;

keys = { '1': "uDiMcWVNTuz//naQ88sOcN+E40CyBRGzGTT7OkoBS6M=" }
encryptor = Keyring(keys, { "digest_salt": "salt-n-pepper" })

# STEP 1: Encrypt message using latest encryption key.
encrypted, keyringId, digest = encryptor.encrypt("super secret")
print(f'πŸ”’ {encrypted}')
print(f'πŸ”‘ {keyringId}')
print(f'πŸ”Ž {digest}')
#=> πŸ”’ Vco48O95YC4jqj44MheY8zFO2NLMPp/KILiUGbKxHvAwLd2/AN+zUG650CJzogttqnF1cGMFb//Idg4+bXoRMQ== 
#=> πŸ”‘ 1
#=> πŸ”Ž c39ec9729dbacd45cecd5ea9a60b15b50b0cc857

# STEP 2: Decrypted message using encryption key defined by keyring id.
decrypted = encryptor.decrypt(encrypted, keyringId)
print(f'βœ‰οΈ {decrypted}')
#=> βœ‰οΈ super secret

Change encryption algorithm

You can choose between AES-128-CBC, AES-192-CBC and AES-256-CBC. By default, AES-128-CBC will be used.

To specify the encryption algorithm, set the encryption option. The following example uses AES-256-CBC.

", })">
from keyring import Keyring

keys = { "1": "uDiMcWVNTuz//naQ88sOcN+E40CyBRGzGTT7OkoBS6M=" }
encryptor = Keyring(keys, {
  "encryption": "aes-256-cbc",
  "digest_salt": "
   
    "
   ,
})

Exchange data with Ruby

If you use Ruby, you may be interested in https://github.com/fnando/attr_keyring, which is able to read and write messages using the same format.

Exchange data with Node.js

If you use Node.js, you may be interested in https://github.com/fnando/keyring-node, which is able to read and write messages using the same format.

Development

After checking out the repo, run pip install -r requirements.dev.txt to install dependencies. Then, run pytest to run the tests.

Contributing

Bug reports and pull requests are welcome on GitHub at https://github.com/dannluciano/keyring-python. This project is intended to be a safe, welcoming space for collaboration, and contributors are expected to adhere to the Contributor Covenant code of conduct.

License

The gem is available as open source under the terms of the MIT License.

Icon

Icon made by Icongeek26 from Flaticon is licensed by Creative Commons BY 3.0.

Code of Conduct

Everyone interacting in the keyring project’s codebases, issue trackers, chat rooms and mailing lists is expected to follow the code of conduct.

Acknowledgments

Inspired:

Thanks to IFPI for pay my salary!

IFPI

Owner
Dann Luciano
Dann Luciano
A simple, terminal password manager in Python.

A simple, terminal password manager in Python.

81 Nov 22, 2022
Pool funds to bootstrap a Uniswap pair

Seed liquidity A contract to pool funds which are then used to boostrap a new Uniswap liquidity pair. Specification A new SeedLiquidity contract is de

66 Dec 09, 2022
Stenography encryption script

ImageCrypt Project description Installation Usage Project description Project AlexGyver on Python by TheK4n Design by ΠŸΠ°ΡˆΡƒΡˆΠΊΠ° Byte packing in decimal

Kan 5 Dec 14, 2022
A really, really bad way to encrypt your text

deoxyencryptingnucleicacids A really, really bad way to encrypt your text. A general description of the scheme Encoding: The ascii plaintext is first

Sam Pinkerton 1 Nov 01, 2021
A simple python program to sign text using either the RSA or ISRSAC algorithm with GUI built using tkinter library.

Digital Signatures using ISRSAC Algorithm A simple python program to sign text using either the RSA or ISRSAC algorithm with GUI built using tkinter l

Vasu Mandhanya 3 Nov 15, 2022
A simple program written in python to convert: USD, EUR & BTC to BRL

CoinsPrice This is a simple program written in python to convert: USD EUR BTC to BRL, and I used an API to get coins price. Take a look at the window

Luiz Henrique 1 Feb 09, 2022
Implementation of Smart Batch Auction for NFT launches on Tezos.

NFT Smart Batch Auction Smart Batch Auctions are an improvement over the traditional first come first serve (FCFS) NFT drops. FCFS design has been in

Anshu Jalan 5 May 06, 2022
Pythonic Smart Contract Language for the EVM

Introduction orfipy is a tool written in python/cython to extract ORFs in an extremely and fast and flexible manner. Other popular ORF searching tools

Vyper 4.4k Dec 30, 2022
Cryptocurrency application that displays instant cryptocurrency prices and reads prices with the Google Text-to-Speech library.

πŸ“ˆ Cryptocurrency Price App πŸ’° β—½ Cryptocurrency application that displays instant cryptocurrency prices and reads prices with the Google Text-to-Speec

Furkan Mert 2 Nov 08, 2021
This demo is an on-chain NFT auction using smart contracts on the Algorand blockchain.

Algorand Auction Demo This demo is an on-chain NFT auction using smart contracts on the Algorand blockchain. Usage The file auction/operations.py prov

1 Jan 27, 2022
πŸ”‘ Password manager and password generator

Password-Manager Create Account Quick Login Generate Password Save Password Offline App Passwords are stored on your system and no one has access to t

Abbas Ataei 41 Nov 09, 2022
Vaulty - Encrypt/Decrypt with ChaCha20-Poly1305

Vaulty Encrypt/Decrypt with ChaCha20-Poly1305 Vaulty is an extremely lightweight encryption/decryption tool which uses ChaCha20-Poly1305 to provide 25

Chris Mason 1 Jul 04, 2022
RSI Algorithmic Trading with Python

In this repository you can see my first algorithhmic trading script. I use 5 cryptocurrencies: Bitcoin (BTC), Ethereum (ETH), Bitcoin Cash (BCH), Litecoin (LTC) and Chainlink (LINK).

Jon Aldekoa 4 Mar 16, 2022
Python based project to pull useful account statistics from the Algorand block chain.

PlanetWatchStats Python based project to pull useful account statistics from the Algorand block chain. Setup pip install -r requirements.txt Run pytho

M0x40 1 Jan 27, 2022
Tink is a multi-language, cross-platform, open source library that provides cryptographic APIs that are secure, easy to use correctly, and hard(er) to misuse.

Tink A multi-language, cross-platform library that provides cryptographic APIs that are secure, easy to use correctly, and hard(er) to misuse. Ubuntu

Google 12.9k Jan 05, 2023
ETHGreen blockchain is a fork from STAI and Chia blockchain including features implemented by Covid blockchain.

Welcome to ETHGreen Blockchain ETHGreen blockchain is a fork from STAI and Chia blockchain including features implemented by Covid blockchain. About t

11 Dec 23, 2022
Stor is a community-driven green cryptocurrency based on a proof of space and time consensus algorithm.

Stor Blockchain Stor is a community-driven green cryptocurrency based on a proof of space and time consensus algorithm. For more information, see our

Stor Network 15 May 18, 2022
A bot for FaucetCrypto a cryptocurrency faucet. The bot can currently claim PTC ads, main reward and all the shortlinks except exe.io and fc.lc.

A bot for the high paying popular cryptocurrency faucet Faucet Crypto. The bot is built using Python and Selenium, currently it is under active develo

Sourav R S 81 Dec 19, 2022
Salted Crypto Python library

Salted Crypto Python library. Allows to encrypt and decrypt files and directories using popular cryptographic algorithms with salty key(s).

7 Jul 18, 2022
seno-blockchain is just a fork of Chia, designed to be efficient, decentralized, and secure

seno-blockchain https://seno.uno Seno is just a fork of Chia, designed to be efficient, decentralized, and secure. Here are some of the features and b

Denis Erygin 27 Jul 02, 2022