Super Simple Similarities Service

Related tags

Searchsimsity
Overview

simsity

Simsity is a Super Simple Similarities Service[tm].
It's all about building a neighborhood. Literally!


This repository contains simple tools to help in similarity retrieval scenarios by making a convenient wrapper around encoding strategies as well as nearest neighbor approaches. Typical usecases include early stage bulk labelling and duplication discovery.

Install

You can install simsity via pip.

python -m pip install simsity

Quickstart

This is the basic setup for this package.

from simsity.service import Service
from simsity.datasets import fetch_clinc
from simsity.indexer import PyNNDescentIndexer
from simsity.preprocessing import Identity, ColumnLister

from sklearn.pipeline import make_pipeline
from sklearn.feature_extraction.text import CountVectorizer

# The encoder defines how we encode the data going in.
encoder = make_pipeline(
    ColumnLister(column="text"),
    CountVectorizer()
)

# The indexer handles the nearest neighbor lookup.
indexer = PyNNDescentIndexer(metric="euclidean", n_neighbors=2)

# The service combines the two into a single object.
service_clinc = Service(
    encoder=encoder,
    indexer=indexer,
)

# We can now train the service using this data.
df_clinc = fetch_clinc()

# Important for later: we're only passing the 'text' column to encode
service_clinc.train_from_dataf(df_clinc, features=["text"])

# Query the datapoints
# Note that the keyword argument here refers to 'text'-column
service.query(text="give me directions", n_neighbors=20)

If you'd like you can also save and load the service on disk.

# Save the entire system
service.save("/tmp/simple-model")

# You can also load the model now.
reloaded = Service.load("/tmp/simple-model")

You could even run it as a webservice if you were so inclined.

reloaded.serve(host='0.0.0.0', port=8080)

You can now POST to http://0.0.0.0:8080/query with payload:

{"query": {"text": "hello there"}, "n_neighbors": 20}

Note that the query content here refers to "text"-column once again.

Examples

Check the examples folder for some interesting use-cases and tool integrations.

In particular:

Comments
  • Add support for pretrained encoders and transformed data

    Add support for pretrained encoders and transformed data

    First of all this project looks great! I've taken an initial stab at #12 and also tried to add support querying data that has already been transformed. If you have data that you've already transformed (e.g. a UMAP embedding), you probably don't want to rerun encoder.transform again. In this case you want to index the transformed data and query it directly.

    This is just a first crack so happy to incorporate any feedback you might have!

    opened by gclen 10
  • embetter: better embeddings

    embetter: better embeddings

    This is conceptual work in progress. The maintainer is actively researching this, please do not work on it.

    Problem Statement

    When you submit where is my phoone and you get similarities you may get things like:

    • where is my phone
    • where is my credit card

    Depending on your task, either the "where is" part of the sentence is more important or the "phone" part is more important. The encoder, however, may be very brittle when it comes to spelling errors. So to put it more generally;

    image

    The similarity in an embedded space in our case is very much "general". I'm using "general" here, as opposed to "specific" to indicate that these similarities have been constructed without having a task in mind.

    Similar Issue

    Suppose that we are deduplicating and we have a zipcode, city, first-, and last-name. How would our encoding be able to understand that having the same city is not a strong signal while having the first name certainly is? Can we really expect a standard encoding to understand this? Without labels ... I think not.

    opened by koaning 3
  • Add `Identity` as default encoder for Service.

    Add `Identity` as default encoder for Service.

    As mentioned in https://github.com/koaning/simsity/pull/13:

    I think the refit parameter should go in the Service() call. I think there should also be a parameter somewhere to avoid calling .transform() if the data has already been transformed. Do you think it is worth adding an additional parameter to Service() and keeping the indexed_from_transformed_data method?

    It's a fair remark. I think preventing a transfrom() is fair, but the solution would be to have an Identity() transformer that just keeps the data as-is. This would also make a great default value for the encoder.

    Made this issue to track progress and to discuss the approach.

    opened by koaning 2
  • Codecalm tutorial on simsity

    Codecalm tutorial on simsity

    Hi Vincent. Since I discovered you my barrier towards Python has eroded! Thank you. I'm a Data Scientist who wants to check if simsity can help with retrieving similar regions based on environmental variables.

    opened by FrancyJGLisboa 2
  • Update indexer

    Update indexer

    Hi! Are there any plans to add support for updating the indexer, i.e. add new documents without retraining the entire pipeline? Would be a very useful feature .

    from simsity.service import Service
    
    service = Service(
        indexer=indexer,
        encoder=encoder
    )
    
    service.train_from_dataf(df, features=["text"])
    
    ....
    
    service.update(new_docs, features=["text"])  # <- this
    
    
    opened by nthomsencph 1
  • New API

    New API

    I think the original design was flawed and this project should stick to the scikit-learn API more.

    from simsity.preprocessing import Grab
    from simsity.service import Service
    from simsity.indexer import (AnnoyIndexer, PynnDescentIndexed, NMSlibIndexer,
                                 PineconeIndexer, QdrantIndexer, WeviateIndexer)
    
    
    encoder = make_pipeline(
        make_union(
            make_pipeline(Grab("text"), SentenceEncoder()),
            make_pipeline(Grab("title"), SentenceEncoder())
        )
    )
    
    service = Service(encoder, indexer, batch_size=50)
    service.index(X)
    items, dists = service.query(X, n=10)
    
    opened by koaning 0
  • Education Day Goals

    Education Day Goals

    • [x] add typing + type checker
    • [x] add tests for the minhash tools
    • [ ] collect more useful datasets
    • [x] automate the benchmarking
    • [x] write getting started guides
    • [ ] record a quick demo for colleagues
    • [ ] add github actions stash
    opened by koaning 0
  • added-components

    added-components

    Adding the MinHash components. This is also an amazing opportunity to:

    • [ ] add types and a type checker
    • [ ] add some standard tests for indexers
    • [ ] add a script to run some benchmarks on the clinc dataset
    opened by koaning 0
Releases(0.1.1)
Owner
vincent d warmerdam
Solving problems involving data. Mostly NLP these days. AskMeAnything[tm].
vincent d warmerdam
PwnWiki 数据库搜索命令行工具;该工具有点像 searchsploit 命令,只是搜索的不是 Exploit Database 而是 PwnWiki 条目

PWSearch PwnWiki 数据库搜索命令行工具。该工具有点像 searchsploit 命令,只是搜索的不是 Exploit Database 而是 PwnWiki 条目。

K4YT3X 72 Dec 20, 2022
Image search service based on imgsmlr extension of PostgreSQL. Support image search by image.

imgsmlr-server Image search service based on imgsmlr extension of PostgreSQL. Support image search by image. This is a sample application of imgsmlr.

jie 45 Dec 12, 2022
Search emails from a domain through search engines

EmailFinder - search emails through Search Engines

Josué Encinar 155 Dec 30, 2022
Pysolr — Python Solr client

pysolr pysolr is a lightweight Python client for Apache Solr. It provides an interface that queries the server and returns results based on the query.

Haystack Search 626 Dec 01, 2022
A simple search engine that allow searching for chess games

A simple search engine that allow searching for chess games based on queries about opening names & opening moves. Built with Python 3.10 and python-chess.

Tyler Hoang 1 Jun 17, 2022
ElasticSearch ODM (Object Document Mapper) for Python - pip install esengine

esengine - The Elasticsearch Object Document Mapper esengine is an ODM (Object Document Mapper) it maps Python classes in to Elasticsearch index/doc_t

SEEK International AI 109 Nov 22, 2022
Modular search for Django

Haystack Author: Daniel Lindsley Date: 2013/07/28 Haystack provides modular search for Django. It features a unified, familiar API that allows you to

Haystack Search 3.4k Jan 04, 2023
Python script for finding duplicate images within a folder.

Python script for finding duplicate images within a folder.

194 Dec 31, 2022
基于RSSHUB阅读器实现的获取P站排行和P站搜图,使用时需使用代理

基于RSSHUB阅读器实现的获取P站排行和P站搜图

34 Dec 05, 2022
A real-time tech course finder, created using Elasticsearch, Python, React+Redux, Docker, and Kubernetes.

A real-time tech course finder, created using Elasticsearch, Python, React+Redux, Docker, and Kubernetes.

Dinesh Sonachalam 130 Dec 20, 2022
rclip - AI-Powered Command-Line Photo Search Tool

rclip is a command-line photo search tool based on the awesome OpenAI's CLIP neural network.

Yurij Mikhalevich 394 Dec 12, 2022
Super Simple Similarities Service

Super Simple Similarities Service

vincent d warmerdam 95 Dec 25, 2022
Whoosh indexing capabilities for Flask-SQLAlchemy, Python 3 compatibility fork.

Flask-WhooshAlchemy3 Whoosh indexing capabilities for Flask-SQLAlchemy, Python 3 compatibility fork. Performance improvements and suggestions are read

Blake VandeMerwe 27 Mar 10, 2022
cve-search - a tool to perform local searches for known vulnerabilities

cve-search cve-search is a tool to import CVE (Common Vulnerabilities and Exposures) and CPE (Common Platform Enumeration) into a MongoDB to facilitat

cve-search 2k Jan 01, 2023
Jina allows you to build deep learning-powered search-as-a-service in just minutes

Cloud-native neural search framework for any kind of data

Jina AI 17k Dec 31, 2022
Senginta is All in one Search Engine Scrapper for used by API or Python Module. It's Free!

Senginta is All in one Search Engine Scrapper. With traditional scrapping, Senginta can be powerful to get result from any Search Engine, and convert to Json. Now support only for Google Product Sear

33 Nov 21, 2022
txtai executes machine-learning workflows to transform data and build AI-powered semantic search applications.

txtai executes machine-learning workflows to transform data and build AI-powered semantic search applications.

NeuML 3.1k Dec 31, 2022
Yuno is context based search engine for anime.

Yuno yuno.mp4 Table of Contents Introduction Power Of Yuno Try Yuno How Yuno was created? References Introduction Yuno is a context based search engin

IAmParadox 354 Dec 19, 2022
A Python web searcher library with different search engines

Robert A simple Python web searcher library with different search engines. Install pip install roberthelper Usage from robert import GoogleSearcher

1 Dec 23, 2021
Python Elasticsearch handler for the standard python logging framework

Python Elasticsearch Log handler This library provides an Elasticsearch logging appender compatible with the python standard logging library. This lib

Mohammed Mousa 0 Dec 08, 2021