Full text search for flask.

Overview

flask-msearch

https://img.shields.io/badge/pypi-v0.2.9-brightgreen.svg https://img.shields.io/badge/python-2/3-brightgreen.svg https://img.shields.io/badge/license-BSD-blue.svg

Installation

To install flask-msearch:

pip install flask-msearch
# when MSEARCH_BACKEND = "whoosh"
pip install whoosh blinker
# when MSEARCH_BACKEND = "elasticsearch", only for 6.x.x
pip install elasticsearch==6.3.1

Or alternatively, you can download the repository and install manually by doing:

git clone https://github.com/honmaple/flask-msearch
cd flask-msearch
python setup.py install

Quickstart

from flask_msearch import Search
[...]
search = Search()
search.init_app(app)

# models.py
class Post(db.Model):
    __tablename__ = 'post'
    __searchable__ = ['title', 'content']

# views.py
@app.route("/search")
def w_search():
    keyword = request.args.get('keyword')
    results = Post.query.msearch(keyword,fields=['title'],limit=20).filter(...)
    # or
    results = Post.query.filter(...).msearch(keyword,fields=['title'],limit=20).filter(...)
    # elasticsearch
    keyword = "title:book AND content:read"
    # more syntax please visit https://www.elastic.co/guide/en/elasticsearch/reference/current/query-dsl-query-string-query.html
    results = Post.query.msearch(keyword,limit=20).filter(...)
    return ''

Config

# when backend is elasticsearch, MSEARCH_INDEX_NAME is unused
# flask-msearch will use table name as elasticsearch index name unless set __msearch_index__
MSEARCH_INDEX_NAME = 'msearch'
# simple,whoosh,elaticsearch, default is simple
MSEARCH_BACKEND = 'whoosh'
# table's primary key if you don't like to use id, or set __msearch_primary_key__ for special model
MSEARCH_PRIMARY_KEY = 'id'
# auto create or update index
MSEARCH_ENABLE = True
# logger level, default is logging.WARNING
MSEARCH_LOGGER = logging.DEBUG
# SQLALCHEMY_TRACK_MODIFICATIONS must be set to True when msearch auto index is enabled
SQLALCHEMY_TRACK_MODIFICATIONS = True
# when backend is elasticsearch
ELASTICSEARCH = {"hosts": ["127.0.0.1:9200"]}

Usage

from flask_msearch import Search
[...]
search = Search()
search.init_app(app)

class Post(db.Model):
    __tablename__ = 'basic_posts'
    __searchable__ = ['title', 'content']

    id = db.Column(db.Integer, primary_key=True)
    title = db.Column(db.String(49))
    content = db.Column(db.Text)

    def __repr__(self):
        return '<Post:{}>'.format(self.title)

if raise sqlalchemy ValueError,please pass db param to Search

db = SQLalchemy()
search = Search(db=db)

Create_index

search.create_index()
search.create_index(Post)

Update_index

search.update_index()
search.update_index(Post)
# or
search.create_index(update=True)
search.create_index(Post, update=True)

Delete_index

search.delete_index()
search.delete_index(Post)
# or
search.create_index(delete=True)
search.create_index(Post, delete=True)

Custom Analyzer

only for whoosh backend

from jieba.analyse import ChineseAnalyzer
search = Search(analyzer=ChineseAnalyzer())

or use __msearch_analyzer__ for special model

class Post(db.Model):
    __tablename__ = 'post'
    __searchable__ = ['title', 'content', 'tag.name']
    __msearch_analyzer__ = ChineseAnalyzer()

Custom index name

If you want to set special index name for some model.

class Post(db.Model):
    __tablename__ = 'post'
    __searchable__ = ['title', 'content', 'tag.name']
    __msearch_index__ = "post111"

Custom schema

from whoosh.fields import ID

class Post(db.Model):
    __tablename__ = 'post'
    __searchable__ = ['title', 'content', 'tag.name']
    __msearch_schema__ = {'title': ID(stored=True, unique=True), 'content': 'text'}

Note: if you use hybrid_property, default field type is Text unless set special __msearch_schema__

Custom parser

from whoosh.qparser import MultifieldParser

class Post(db.Model):
    __tablename__ = 'post'
    __searchable__ = ['title', 'content']

    def _parser(fieldnames, schema, group, **kwargs):
        return MultifieldParser(fieldnames, schema, group=group, **kwargs)

    __msearch_parser__ = _parser

Note: Only for MSEARCH_BACKEND is whoosh

Custom index signal

flask-msearch uses flask signal to update index by default, if you want to use other asynchronous tools such as celey to update index, please set special MSEARCH_INDEX_SIGNAL

# app.py
app.config["MSEARCH_INDEX_SIGNAL"] = celery_signal
# or use string as variable
app.config["MSEARCH_INDEX_SIGNAL"] = "modulename.tasks.celery_signal"
search = Search(app)

# tasks.py
from flask_msearch.signal import default_signal

@celery.task(bind=True)
def celery_signal_task(self, backend, sender, changes):
    default_signal(backend, sender, changes)
    return str(self.request.id)

def celery_signal(backend, sender, changes):
    return celery_signal_task.delay(backend, sender, changes)

Relate index(Experimental)

for example

class Tag(db.Model):
    __tablename__ = 'tag'

    id = db.Column(db.Integer, primary_key=True)
    name = db.Column(db.String(49))

class Post(db.Model):
    __tablename__ = 'post'
    __searchable__ = ['title', 'content', 'tag.name']

    id = db.Column(db.Integer, primary_key=True)
    title = db.Column(db.String(49))
    content = db.Column(db.Text)

    # one to one
    tag_id = db.Column(db.Integer, db.ForeignKey('tag.id'))
    tag = db.relationship(
        Tag, backref=db.backref(
            'post', uselist=False), uselist=False)

    def __repr__(self):
        return '<Post:{}>'.format(self.title)

You must add msearch_FUN to Tag model,or the tag.name can’t auto update.

class Tag....
  ......
  def msearch_post_tag(self, delete=False):
      from sqlalchemy import text
      sql = text('select id from post where tag_id=' + str(self.id))
      return {
          'attrs': [{
              'id': str(i[0]),
              'tag.name': self.name
          } for i in db.engine.execute(sql)],
          '_index': Post
      }
Owner
honmaple
风落花语风落天,花落风雨花落田.
honmaple
Pythonic search engine based on PyLucene.

Lupyne is a search engine based on PyLucene, the Python extension for accessing Java Lucene. Lucene is a relatively low-level toolkit, and PyLucene wr

A. Coady 83 Jan 02, 2023
Jina allows you to build deep learning-powered search-as-a-service in just minutes

Cloud-native neural search framework for any kind of data

Jina AI 17k Dec 31, 2022
基于RSSHUB阅读器实现的获取P站排行和P站搜图,使用时需使用代理

基于RSSHUB阅读器实现的获取P站排行和P站搜图

34 Dec 05, 2022
cve-search - a tool to perform local searches for known vulnerabilities

cve-search cve-search is a tool to import CVE (Common Vulnerabilities and Exposures) and CPE (Common Platform Enumeration) into a MongoDB to facilitat

cve-search 2k Jan 01, 2023
A simple tool for searching images inside a local folder with text/image input using CLIP

clip-search (WIP) A simple tool for searching images inside a local folder with text/image input using CLIP 10 results for "a blonde woman" in a folde

5 Dec 25, 2022
Home for Elasticsearch examples available to everyone. It's a great way to get started.

Introduction This is a collection of examples to help you get familiar with the Elastic Stack. Each example folder includes a README with detailed ins

elastic 2.5k Jan 03, 2023
Python script for finding duplicate images within a folder.

Python script for finding duplicate images within a folder.

194 Dec 31, 2022
A library for fast parse & import of Windows Prefetch into Elasticsearch.

prefetch2es Fast import of Windows Prefetch(.pf) into Elasticsearch. prefetch2es uses C library libscca. Usage When using from the commandline interfa

S.Nakano 5 Nov 24, 2022
Full-text multi-table search application for Django. Easy to install and use, with good performance.

django-watson django-watson is a fast multi-model full-text search plugin for Django. It is easy to install and use, and provides high quality search

Dave Hall 1.1k Jan 03, 2023
Google Project: Search and auto-complete sentences within given input text files, manipulating data with complex data-structures.

Auto-Complete Google Project In this project there is an implementation for one feature of Google's search engines - AutoComplete. Autocomplete, or wo

Hadassah Engel 10 Jun 20, 2022
solrpy is a Python client for Solr

solrpy solrpy is a Python client for Solr, an enterprise search server built on top of Lucene. solrpy allows you to add documents to a Solr instance,

Jiho Persy Lee 37 Jul 22, 2021
A sentence search engine that fetches examples from trusted news/media organisations. Great for writing better English.

A sentence search engine that fetches examples from trusted news/media websites. Great for improving writing & speaking better English.

Stephen Appiah 1 Apr 04, 2022
High level Python client for Elasticsearch

Elasticsearch DSL Elasticsearch DSL is a high-level library whose aim is to help with writing and running queries against Elasticsearch. It is built o

elastic 3.6k Dec 30, 2022
A search engine to query social media insights with political theme

social-insights Social insights is an open source big data project that generates insights about various interesting topics happening every day. Curre

UMass GDSC 10 Feb 28, 2022
A library for fast import of Windows NT Registry(REGF) into Elasticsearch.

A library for fast import of Windows NT Registry(REGF) into Elasticsearch.

S.Nakano 3 Apr 01, 2022
Pythonic Lucene - A simplified python impelementaiton of Apache Lucene

A simplified python impelementaiton of Apache Lucene, mabye helps to understand how an enterprise search engine really works.

Mahdi Sadeghzadeh Ghamsary 2 Sep 12, 2022
Full text search for flask.

flask-msearch Installation To install flask-msearch: pip install flask-msearch # when MSEARCH_BACKEND = "whoosh" pip install whoosh blinker # when MSE

honmaple 197 Dec 29, 2022
Modular search for Django

Haystack Author: Daniel Lindsley Date: 2013/07/28 Haystack provides modular search for Django. It features a unified, familiar API that allows you to

Haystack Search 3.4k Jan 04, 2023
txtai executes machine-learning workflows to transform data and build AI-powered semantic search applications.

txtai executes machine-learning workflows to transform data and build AI-powered semantic search applications.

NeuML 3.1k Dec 31, 2022
GitScanner is a script to make it easy to search for Exposed Git through an advanced Google search.

GitScanner Legal disclaimer Usage of GitScanner for attacking targets without prior mutual consent is illegal. It is the end user's responsibility to

Kaio Gomes 3 Oct 28, 2022