Full text search for flask.

Overview

flask-msearch

https://img.shields.io/badge/pypi-v0.2.9-brightgreen.svg https://img.shields.io/badge/python-2/3-brightgreen.svg https://img.shields.io/badge/license-BSD-blue.svg

Installation

To install flask-msearch:

pip install flask-msearch
# when MSEARCH_BACKEND = "whoosh"
pip install whoosh blinker
# when MSEARCH_BACKEND = "elasticsearch", only for 6.x.x
pip install elasticsearch==6.3.1

Or alternatively, you can download the repository and install manually by doing:

git clone https://github.com/honmaple/flask-msearch
cd flask-msearch
python setup.py install

Quickstart

from flask_msearch import Search
[...]
search = Search()
search.init_app(app)

# models.py
class Post(db.Model):
    __tablename__ = 'post'
    __searchable__ = ['title', 'content']

# views.py
@app.route("/search")
def w_search():
    keyword = request.args.get('keyword')
    results = Post.query.msearch(keyword,fields=['title'],limit=20).filter(...)
    # or
    results = Post.query.filter(...).msearch(keyword,fields=['title'],limit=20).filter(...)
    # elasticsearch
    keyword = "title:book AND content:read"
    # more syntax please visit https://www.elastic.co/guide/en/elasticsearch/reference/current/query-dsl-query-string-query.html
    results = Post.query.msearch(keyword,limit=20).filter(...)
    return ''

Config

# when backend is elasticsearch, MSEARCH_INDEX_NAME is unused
# flask-msearch will use table name as elasticsearch index name unless set __msearch_index__
MSEARCH_INDEX_NAME = 'msearch'
# simple,whoosh,elaticsearch, default is simple
MSEARCH_BACKEND = 'whoosh'
# table's primary key if you don't like to use id, or set __msearch_primary_key__ for special model
MSEARCH_PRIMARY_KEY = 'id'
# auto create or update index
MSEARCH_ENABLE = True
# logger level, default is logging.WARNING
MSEARCH_LOGGER = logging.DEBUG
# SQLALCHEMY_TRACK_MODIFICATIONS must be set to True when msearch auto index is enabled
SQLALCHEMY_TRACK_MODIFICATIONS = True
# when backend is elasticsearch
ELASTICSEARCH = {"hosts": ["127.0.0.1:9200"]}

Usage

from flask_msearch import Search
[...]
search = Search()
search.init_app(app)

class Post(db.Model):
    __tablename__ = 'basic_posts'
    __searchable__ = ['title', 'content']

    id = db.Column(db.Integer, primary_key=True)
    title = db.Column(db.String(49))
    content = db.Column(db.Text)

    def __repr__(self):
        return '<Post:{}>'.format(self.title)

if raise sqlalchemy ValueError,please pass db param to Search

db = SQLalchemy()
search = Search(db=db)

Create_index

search.create_index()
search.create_index(Post)

Update_index

search.update_index()
search.update_index(Post)
# or
search.create_index(update=True)
search.create_index(Post, update=True)

Delete_index

search.delete_index()
search.delete_index(Post)
# or
search.create_index(delete=True)
search.create_index(Post, delete=True)

Custom Analyzer

only for whoosh backend

from jieba.analyse import ChineseAnalyzer
search = Search(analyzer=ChineseAnalyzer())

or use __msearch_analyzer__ for special model

class Post(db.Model):
    __tablename__ = 'post'
    __searchable__ = ['title', 'content', 'tag.name']
    __msearch_analyzer__ = ChineseAnalyzer()

Custom index name

If you want to set special index name for some model.

class Post(db.Model):
    __tablename__ = 'post'
    __searchable__ = ['title', 'content', 'tag.name']
    __msearch_index__ = "post111"

Custom schema

from whoosh.fields import ID

class Post(db.Model):
    __tablename__ = 'post'
    __searchable__ = ['title', 'content', 'tag.name']
    __msearch_schema__ = {'title': ID(stored=True, unique=True), 'content': 'text'}

Note: if you use hybrid_property, default field type is Text unless set special __msearch_schema__

Custom parser

from whoosh.qparser import MultifieldParser

class Post(db.Model):
    __tablename__ = 'post'
    __searchable__ = ['title', 'content']

    def _parser(fieldnames, schema, group, **kwargs):
        return MultifieldParser(fieldnames, schema, group=group, **kwargs)

    __msearch_parser__ = _parser

Note: Only for MSEARCH_BACKEND is whoosh

Custom index signal

flask-msearch uses flask signal to update index by default, if you want to use other asynchronous tools such as celey to update index, please set special MSEARCH_INDEX_SIGNAL

# app.py
app.config["MSEARCH_INDEX_SIGNAL"] = celery_signal
# or use string as variable
app.config["MSEARCH_INDEX_SIGNAL"] = "modulename.tasks.celery_signal"
search = Search(app)

# tasks.py
from flask_msearch.signal import default_signal

@celery.task(bind=True)
def celery_signal_task(self, backend, sender, changes):
    default_signal(backend, sender, changes)
    return str(self.request.id)

def celery_signal(backend, sender, changes):
    return celery_signal_task.delay(backend, sender, changes)

Relate index(Experimental)

for example

class Tag(db.Model):
    __tablename__ = 'tag'

    id = db.Column(db.Integer, primary_key=True)
    name = db.Column(db.String(49))

class Post(db.Model):
    __tablename__ = 'post'
    __searchable__ = ['title', 'content', 'tag.name']

    id = db.Column(db.Integer, primary_key=True)
    title = db.Column(db.String(49))
    content = db.Column(db.Text)

    # one to one
    tag_id = db.Column(db.Integer, db.ForeignKey('tag.id'))
    tag = db.relationship(
        Tag, backref=db.backref(
            'post', uselist=False), uselist=False)

    def __repr__(self):
        return '<Post:{}>'.format(self.title)

You must add msearch_FUN to Tag model,or the tag.name can’t auto update.

class Tag....
  ......
  def msearch_post_tag(self, delete=False):
      from sqlalchemy import text
      sql = text('select id from post where tag_id=' + str(self.id))
      return {
          'attrs': [{
              'id': str(i[0]),
              'tag.name': self.name
          } for i in db.engine.execute(sql)],
          '_index': Post
      }
Owner
honmaple
风落花语风落天,花落风雨花落田.
honmaple
document organizer with tags and full-text-search, in a simple and clean sqlite3 schema

document organizer with tags and full-text-search, in a simple and clean sqlite3 schema

Manos Pitsidianakis 152 Oct 29, 2022
A web search server for ParlAI, including Blenderbot2.

Description A web search server for ParlAI, including Blenderbot2. Querying the server: The server reacting correctly: Uses html2text to strip the mar

Jules Gagnon-Marchand 119 Jan 06, 2023
Image search service based on imgsmlr extension of PostgreSQL. Support image search by image.

imgsmlr-server Image search service based on imgsmlr extension of PostgreSQL. Support image search by image. This is a sample application of imgsmlr.

jie 45 Dec 12, 2022
A sphinx extension for designing beautiful, screen-size responsive web components.

sphinx-design A sphinx extension for designing beautiful, view size responsive web components. Created with inspiration from Bootstrap (v5), Material

Executable Books 109 Jan 01, 2023
An image inline search telegram bot.

Image-Search-Bot An image inline search telegram bot. Note: Use Telegram picture bot. That is better. Not recommending to deploy this bot. Made with P

Fayas Noushad 24 Oct 21, 2022
A library for fast parse & import of Windows Prefetch into Elasticsearch.

prefetch2es Fast import of Windows Prefetch(.pf) into Elasticsearch. prefetch2es uses C library libscca. Usage When using from the commandline interfa

S.Nakano 5 Nov 24, 2022
Google Search Engine Results Pages (SERP) in locally, no API key, no signup required

Local SERP Google Search Engine Results Pages (SERP) in locally, no API key, no signup required Make sure the chromedriver and required package are in

theblackcat102 4 Jun 29, 2021
A simple tool for searching images inside a local folder with text/image input using CLIP

clip-search (WIP) A simple tool for searching images inside a local folder with text/image input using CLIP 10 results for "a blonde woman" in a folde

5 Dec 25, 2022
ForFinder is a search tool for folder and files

ForFinder is a search tool for folder and files. You can use that when you Source Code Analysis at your project's local files or other projects that you are download. Enter a root path and keyword to

Çağrı Aliş 7 Oct 25, 2022
Modular search for Django

Haystack Author: Daniel Lindsley Date: 2013/07/28 Haystack provides modular search for Django. It features a unified, familiar API that allows you to

Haystack Search 3.4k Jan 04, 2023
Full-text multi-table search application for Django. Easy to install and use, with good performance.

django-watson django-watson is a fast multi-model full-text search plugin for Django. It is easy to install and use, and provides high quality search

Dave Hall 1.1k Jan 03, 2023
This project is a sample demo of Arxiv search related to AI/ML Papers built using Streamlit, sentence-transformers and Faiss.

This project is a sample demo of Arxiv search related to AI/ML Papers built using Streamlit, sentence-transformers and Faiss.

Karn Deb 49 Oct 30, 2022
MeiliSearch FastAPI provides FastAPI routes for interacting with MeiliSearch.

MeiliSearch FastAPI MeiliSearch FastAPI provides FastAPI routes for interacting with MeiliSearch. Installation Using a virtual environmnet is recommen

Paul Sanders 29 Nov 18, 2022
Deep Image Search - AI-Based Image Search Engine

Deep Image Search is an AI-based image search engine that includes deep transfer learning features Extraction and tree-based vectorized search technique.

144 Jan 05, 2023
基于RSSHUB阅读器实现的获取P站排行和P站搜图,使用时需使用代理

基于RSSHUB阅读器实现的获取P站排行和P站搜图

34 Dec 05, 2022
Yuno is context based search engine for anime.

Yuno yuno.mp4 Table of Contents Introduction Power Of Yuno Try Yuno How Yuno was created? References Introduction Yuno is a context based search engin

IAmParadox 354 Dec 19, 2022
A simple search engine that allow searching for chess games

A simple search engine that allow searching for chess games based on queries about opening names & opening moves. Built with Python 3.10 and python-chess.

Tyler Hoang 1 Jun 17, 2022
Python Elasticsearch handler for the standard python logging framework

Python Elasticsearch Log handler This library provides an Elasticsearch logging appender compatible with the python standard logging library. This lib

Mohammed Mousa 0 Dec 08, 2021
Jina allows you to build deep learning-powered search-as-a-service in just minutes

Cloud-native neural search framework for any kind of data

Jina AI 17k Dec 31, 2022
Wagtail CLIP allows you to search your Wagtail images using natural language queries.

Wagtail CLIP allows you to search your Wagtail images using natural language queries.

Matt Segal 10 Dec 21, 2022