Hg002-qc-snakemake - HG002 QC Snakemake

Overview

HG002 QC Snakemake

To Run

Resources and data specified within snakefile (hg002QC.smk) for simplicity. Tested with snakemake v6.15.3.

Warning: Several steps of this workflow require minimum coverage. It's recommended that this workflow not be run when yield in base pairs is insufficient to produceat least 15X coverage (i.e. yield/3099922541 >= 15x).

# clone repo
git clone --recursive https://github.com/PacificBiosciences/pb-human-wgs-workflow-snakemake.git workflow

# make necessary directories
mkdir cluster_logs

# create conda environment
conda env create --file workflow/environment.yaml

# activate conda environment
conda activate pb-human-wgs-workflow

# submit job
sbatch workflow/run_hg002QC.sh

Plots

A list of important stats from target files that would be good for plotting.

targets = [f"conditions/{condition}/{filename}"
                    for condition in ubam_dict.keys()
                    for filename in ["smrtcell_stats/all_movies.read_length_and_quality.tsv",
                                    "hifiasm/asm.p_ctg.fasta.stats.txt",
                                    "hifiasm/asm.a_ctg.fasta.stats.txt",
                                    "hifiasm/asm.p_ctg.qv.txt",
                                    "hifiasm/asm.a_ctg.qv.txt",
                                    "truvari/summary.txt",
                                    "pbsv/all_chroms.pbsv.vcf.gz",
                                    "deepvariant/deepvariant.vcf.stats.txt",
                                    "whatshap/deepvariant.phased.tsv",
                                    "happy/all.summary.csv",
                                    "happy/all.extended.csv",
                                    "happy/cmrg.summary.csv",
                                    "happy/cmrg.extended.csv",
                                    "mosdepth/coverage.mosdepth.summary.txt",
                                    "mosdepth/mosdepth.M2_ratio.txt",
                                    "mosdepth/gc_coverage.summary.txt",
                                    "mosdepth/coverage.thresholds.summary.txt"]]
  • smrtcell_stats/all_movies.read_length_and_quality.tsv
    • outputs 3 columns (read name, read length, read quality)
    • boxplots of read length and quality
  • hifiasm/asm.p_ctg.fasta.stats.txt (primary) + hifiasm/asm.a_ctg.fasta.stats.txt (alternate)
    • all stats below should be collected for both primary (p_ctg) and alternate (p_atg) assemblies
    • assembly size awk '$1=="SZ" {print $2}' <filename>
    • auN (area under the curve) awk '$1=="AU" {print $2}' <filename>
    • NGx - line plot of NG10 through NG90 awk '$1=="NL" {print $2 $3}' <filename> ($2 is x-axis, $3 y-axis) like this: example plot
  • hifiasm/asm.p_ctg.qv.txt + hifiasm/asm.a_ctg.qv.txt
    • adjusted assembly quality awk '$1=="QV" {print $3}' <filename> for primary and alternate assemblies
  • truvari/truvari.summary.txt
    • structural variant recall jq .recall <filename>
    • structural variant precision jq .precision <filename>
    • structural variant f1 jq .f1 <filename>
    • number of calls jq '."call cnt"' <filename>
    • FP jq .FP <filename>
    • TP-call jq .TP-call <filename>
    • FN jq .FN <filename>
    • TP-base jq .TP-base <filename>
  • pbsv/all_chroms.pbsv.vcf.gz
    • counts of each type of variant bcftools query -i 'FILTER=="PASS"' -f '%INFO/SVTYPE\n' <filename> | awk '{A[$1]++}END{for(i in A)print i,A[i]}'
    • can also do size distributions of indels bcftools query -i 'FILTER=="PASS" && (INFO/SVTYPE=="INS" | INFO/SVTYPE=="DEL")' -f '%INFO/SVTYPE\t%INFO/SVLEN\n' <filename>
  • deepvariant/deepvariant.vcf.stats.txt
    • several values in lines starting with 'SN' awk '$1=="SN"' <filename>
      • number of SNPS
      • number INDELs
      • number of multi-allelic sites
      • number of multi-allelic SNP sites
    • ratio of transitions to transversions awk '$1=="TSTV" {print$5}' <filename>
    • can monitor substitution types awk '$1=="ST"' <filename>
    • SNP heterozygous : non-ref homozygous ratio awk '$1=="PSC" {print $6/$5}' <filename>
    • SNP transitions : transversions awk '$1=="PSC" {print $7/$8}' <filename>
    • Number of heterozygous insertions : number of homozgyous alt insertions awk '$1=="PSI" {print $8/$10}' <filename>
    • Number of heterozygous deletions : number of homozgyous alt deletions awk '$1=="PSI" {print $9/$11}' <filename>
    • Total INDEL heterozygous:homozygous ratio awk '$1=="PSI" {print ($8+$9)/($10+$11)}' <filename>8+9:10+11 indel het:hom)
  • whatshap/deepvariant.phased.tsv
    • phase block N50 awk '$2=="ALL" {print $22}' <filename>
    • bp_per_block_sum (total number of phased bases) awk '$2=="ALL" {print $18}' <filename>
  • whatshap/deepvariant.phased.blocklist
    • calculate phase block size (to - from) and reverse order them (awk 'NR>1 {print $5-$4}' <filename> |sort -nr), then plot as cumulative line graph like for assembly, N_0 to N90 example plot
  • happy/all.summary.csv + happy/cmrg.summary.csv
    • stats should be collected for all variants and cmrg challenging medically relevant genes
      • SNP recall awk -F, '$1=="SNP" && $2=="PASS" {print $10}' <filename>
      • SNP precision awk -F, '$1=="SNP" && $2=="PASS" {print $11}' <filename>
      • SNP F1 awk -F, '$1=="SNP" && $2=="PASS" {print $13}' <filename>
      • INDEL recall awk -F, '$1=="INDEL" && $2=="PASS" {print $10}' <filename>
      • INDEL precision awk -F, '$1=="INDEL" && $2=="PASS" {print $11}' <filename>
      • INDEL F1 awk -F, '$1=="INDEL" && $2=="PASS" {print $13}' <filename>
  • happy/all.extended.csv + happy/cmrg.extended.csv
    • there are many stratifications that can be examined, and Aaron Wenger might have opinionso n which are most important. The below commands are just for one stratification "GRCh38_lowmappabilityall.bed.gz".
    • SNP GRCh38_lowmappabilityall recall awk -F, '$1=="SNP" && $2=="*" && $3=="GRCh38_lowmappabilityall.bed.gz" && $4=="PASS" {print $8}' <filename>
    • SNP GRCh38_lowmappabilityall precision awk -F, '$1=="SNP" && $2=="*" && $3=="GRCh38_lowmappabilityall.bed.gz" && $4=="PASS" {print $9}' <filename>
    • SNP GRCh38_lowmappabilityall F1 awk -F, '$1=="SNP" && $2=="*" && $3=="GRCh38_lowmappabilityall.bed.gz" && $4=="PASS" {print $11}' <filename>
    • INDEL GRCh38_lowmappabilityall recall awk -F, '$1=="INDEL" && $2=="*" && $3=="GRCh38_lowmappabilityall.bed.gz" && $4=="PASS" {print $8}' <filename>
    • INDEL GRCh38_lowmappabilityall precision awk -F, '$1=="INDEL" && $2=="*" && $3=="GRCh38_lowmappabilityall.bed.gz" && $4=="PASS" {print $9}' <filename>
    • INDEL GRCh38_lowmappabilityall F1 awk -F, '$1=="INDEL" && $2=="*" && $3=="GRCh38_lowmappabilityall.bed.gz" && $4=="PASS" {print $11}' <filename>
  • mosdepth/coverage.mosdepth.summary.txt
    • mean aligned coverage in "coverage.mosdepth.summary.txt" - 4th column of final row, can grep 'total_region'
  • mosdepth/mosdepth.M2_ratio.txt
    • outputs single value: ratio of chr2 coverage to chrM coverage
    • bar chart of m2 ratio
  • mosdepth/gc_coverage.summary.txt
    • outputs 5 columns: gc percentage bin, q1 , median , q3 , count
    • q1, median, q3 columns are statistics for coverage at different gc percentages (e.g. median cover at 30% GC)
    • "count" refers to # of 500 bp windows that fall in that bin
    • can pick a couple of key GC coverage bins and make box plots out of them
  • mosdepth/coverage.thresholds.summary.txt
    • outputs 10 columns corresponding to % of genome sequenced to minimum coverage depths (1X - 10X)
    • maybe a line chart comparing the different coverage thresholds among conditions
Owner
Juniper A. Lake
Bioinformatics Scientist
Juniper A. Lake
Python tools for querying and manipulating BIDS datasets.

PyBIDS is a Python library to centralize interactions with datasets conforming BIDS (Brain Imaging Data Structure) format.

Brain Imaging Data Structure 180 Dec 18, 2022
Exploratory Data Analysis for Employee Retention Dataset

Exploratory Data Analysis for Employee Retention Dataset Employee turn-over is a very costly problem for companies. The cost of replacing an employee

kana sudheer reddy 2 Oct 01, 2021
Candlestick Pattern Recognition with Python and TA-Lib

Candlestick-Pattern-Recognition-with-Python-and-TA-Lib Goal Look at the S&P500 to try and get a better understanding of these candlestick patterns and

Ganesh Jainarain 11 Oct 07, 2022
DaCe is a parallel programming framework that takes code in Python/NumPy and other programming languages

aCe - Data-Centric Parallel Programming Decoupling domain science from performance optimization. DaCe is a parallel programming framework that takes c

SPCL 330 Dec 30, 2022
Aggregating gridded data (xarray) to polygons

A package to aggregate gridded data in xarray to polygons in geopandas using area-weighting from the relative area overlaps between pixels and polygons. Check out the binder link above for a sample c

Kevin Schwarzwald 42 Nov 09, 2022
Spaghetti: an open-source Python library for the analysis of network-based spatial data

pysal/spaghetti SPAtial GrapHs: nETworks, Topology, & Inference Spaghetti is an open-source Python library for the analysis of network-based spatial d

Python Spatial Analysis Library 203 Jan 03, 2023
Containerized Demo of Apache Spark MLlib on a Data Lakehouse (2022)

Spark-DeltaLake-Demo Reliable, Scalable Machine Learning (2022) This project was completed in an attempt to become better acquainted with the latest b

8 Mar 21, 2022
Bearsql allows you to query pandas dataframe with sql syntax.

Bearsql adds sql syntax on pandas dataframe. It uses duckdb to speedup the pandas processing and as the sql engine

14 Jun 22, 2022
A highly efficient and modular implementation of Gaussian Processes in PyTorch

GPyTorch GPyTorch is a Gaussian process library implemented using PyTorch. GPyTorch is designed for creating scalable, flexible, and modular Gaussian

3k Jan 02, 2023
Data and code accompanying the paper Politics and Virality in the Time of Twitter

Politics and Virality in the Time of Twitter Data and code accompanying the paper Politics and Virality in the Time of Twitter. In specific: the code

Cardiff NLP 3 Jul 02, 2022
Validation and inference over LinkML instance data using souffle

Translates LinkML schemas into Datalog programs and executes them using Souffle, enabling advanced validation and inference over instance data

Linked data Modeling Language 7 Aug 07, 2022
Data analysis and visualisation projects from a range of individual projects and applications

Python-Data-Analysis-and-Visualisation-Projects Data analysis and visualisation projects from a range of individual projects and applications. Python

Tom Ritman-Meer 1 Jan 25, 2022
PandaPy has the speed of NumPy and the usability of Pandas 10x to 50x faster (by @firmai)

PandaPy "I came across PandaPy last week and have already used it in my current project. It is a fascinating Python library with a lot of potential to

Derek Snow 527 Jan 02, 2023
Pip install minimal-pandas-api-for-polars

Minimal Pandas API for Polars Install From PyPI: pip install minimal-pandas-api-for-polars Example Usage (see tests/test_minimal_pandas_api_for_polars

Austin Ray 6 Oct 16, 2022
A Numba-based two-point correlation function calculator using a grid decomposition

A Numba-based two-point correlation function (2PCF) calculator using a grid decomposition. Like Corrfunc, but written in Numba, with simplicity and hackability in mind.

Lehman Garrison 3 Aug 24, 2022
signac-flow - manage workflows with signac

signac-flow - manage workflows with signac The signac framework helps users manage and scale file-based workflows, facilitating data reuse, sharing, a

Glotzer Group 44 Oct 14, 2022
Universal data analysis tools for atmospheric sciences

U_analysis Universal data analysis tools for atmospheric sciences Script written in python 3. This file defines multiple functions that can be used fo

Luis Ackermann 1 Oct 10, 2021
:truck: Agile Data Preparation Workflows made easy with dask, cudf, dask_cudf and pyspark

To launch a live notebook server to test optimus using binder or Colab, click on one of the following badges: Optimus is the missing framework to prof

Iron 1.3k Dec 30, 2022
Useful tool for inserting DataFrames into the Excel sheet.

PyCellFrame Insert Pandas DataFrames into the Excel sheet with a bunch of conditions Install pip install pycellframe Usage Examples Let's suppose that

Luka Sosiashvili 1 Feb 16, 2022
Udacity - Data Analyst Nanodegree - Project 4 - Wrangle and Analyze Data

WeRateDogs Twitter Data from 2015 to 2017 Udacity - Data Analyst Nanodegree - Project 4 - Wrangle and Analyze Data Table of Contents Introduction Proj

Keenan Cooper 1 Jan 12, 2022