Glyph-graph - A simple, yet versatile, package for graphing equations on a 2-dimensional text canvas

Overview

Glyth Graph

Revision for 0.01

A simple, yet versatile, package for graphing equations on a 2-dimensional text canvas

List of contents:

  1. Brief Introduction
  2. Process Overview
  3. Technical Overview
  4. Function Glossary
  5. Code Example
  6. Legal (MIT license)

Brief Introduction


Glyth Graph is an open-source python package, for graphing equations onto a 2-dimensional array (named the canvas) with a variety of arguments to draw within a specific range and bound. Scaling to the width and height of the canvas in proportion

.

Process Overview


glyth_graph_basic():

Upon attaching the constructor to an object a 2D array with the declared resolution size will be filled with the chosen blank_glyth, named the canvas.

draw_graph():

  1. Check whether the given char_x (x-axis position of the canvas) is within the bounds of the canvas width as stated in the resolution.
  2. If not formatted the equation will be simplified into an expression without 'y', '=' and any spaces.
  3. If not given the y-axis bounds for the equation within the x-axis range will be calculated by repetedly incrementing the x variable.
  4. Then an x variable will be calculated by mapping the char_x from the width to the x-axis range of the equation, equally distributing each increment of char_x in the x-axis.
  5. The x variable will be substitued into the equation to form a y-axis value, which will be mapped from the y-axis bounds of the equation to the canvas height.
  6. Finally, the 2D coordinate of the char_x and char_y value on the canvas will be replaced by the chosen glyth.

Technical Overview


The package operates on mapping values between the x and f(x) from the graph equation to the given resolution of the canvas, translating coordinates with a non-uniform scaling factor to draw a glyth by a 2D index.


Notation form of the equation for mapping charx to x


x-axis Value Equation


where rangefrom and rangeto are respectively the given x-axis region of the equation to draw.



Notation form of the equation for mapping f(x), equal to y, to chary


y-axis Canvas Index Equation


where max and min are respectively the calculated (or given) maximum and minimum y-axis values for the equation within the x-axis region.

Function Glossary


graph_basic(resolution: str, blank_glyth: str = None) -> None

The constructor of the class to create an attached object, setup the canvas array with the arguements given, both the size and blank (background) glyth

 - resolution: the width by the height of the canvas measured in character glyths | 'x'.join([width, height])
 - blank_glyth: the background glyth used for spacing the graph

format_equation(equation: str) -> str

Format the graph equation such that all unecessary characters are removed to be processed, this includes removal of 'y' and '=' if given an equation to form an expression and all ' ' (spaces) present

- equation: the mathematical equation of the graph going to be drawn

y_bounds(self, equation: str, x_range: tuple) -> tuple

Calculate the upper and lower bounds in the y-axis of a graph equation between the given x-axis range, to be used later for mapping positions

- equation: the mathematical equation of the graph going to be drawn
- x_range: a tuple of the x-axis range between which the graph will be used, all outside this is unnecessary

draw_graph(char_x: int, equation: str, glyth: str, x_range: tuple, y_bounds: tuple = None) -> list:

Draw a glyth onto the canvas array dependent on given arguments in relation to the graph equation, including the x-axis range and y-axis bounds of the 2-dimensional section of the graph and character position along the canvas

- char_x: the x_axis glyth position of the canvas, such that it starts to the leftmost position (0) to the rightmost (canvas width - 1) | 0 <= char_x < canvas width
- equation: the mathematical equation of the graph going to be drawn
- glyth: the character/s to be drawn onto the canvas at the calculated coordinate relative to the graph equation
- x_range: a tuple of the x-axis range between which the graph will be used, all outside this is unnecessary | (range_from, range_to)
- y_bounds: a tuple of the y-axis bounds for the x-axis region of the graph, including both the minimum and maximum values | (min, max)

clear_canvas() -> None:

Clear the canvas by replacing all indicies in the array with the blank glyth assigned in the constructor, removing any graphs drawn

print_canvas(clear: bool = None) -> None:

Pretty print the canvas array into equal rows of the set width with newline character moving to the next row, as each index is printed incrementally

- clear: a boolean value (either True or False) whether to clear the each canvas array index after printing the index | True or False

Code Example


A simple code example showing the usage of all functions in the package, with the user inputting variables to produce the wanted graph/s onto the canvas array as random Base64 character glyths:

from glyth_graph import graph_basic
from random import choice

character_set = '0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz+/'

print('---Glyth Graph---')

print('\n---Resolution---')
width = int(input('Width (chars): '))
height = int(input('Height (chars): '))

glyth_graph = graph_basic(
    resolution = 'x'.join([str(width), str(height)]),
    blank_glyth = '  '
)

while True:
    print('\n---Graph Properties---')
    equation = glyth_graph.format_equation(input('Equation: '))
    range_from, range_to = int(input('x-axis From: ')), int(input('x-axis To: '))
    print()

    bounds = glyth_graph.y_bounds(
        equation = equation,
        x_range = (range_from, range_to)
    )

    for char_x in range(0, width):
        glyth_graph.draw_graph(
            char_x = char_x,
            equation = equation,
            glyth = choice(character_set),
            x_range = (range_from, range_to),
            y_bounds = bounds
        )

    glyth_graph.print_canvas()


An example of an output to the program, which can vary with custom values for all given inputs, pretty printing the canvas array:

---Glyth Graph---

---Resolution---
Width (chars): 100
Height (chars): 30

Width: 100 | Height: 30

---Graph Properties---
Equation: y = math.sin(x)
x-axis From: 0
x-axis To: 6.283185

                     LbvwLB+K
                  Rp8        49D
                MB              FgW
              Kt                   O
            i6                      +w
           t                          f
          z                            LZ
        k7                               q
       9                                  q
      Y                                    G
     3                                      yP
    r                                         c
   9                                           h
  C                                             4
 f                                               K
l                                                 M                                               oe
                                                   o                                             7
                                                    y                                           n
                                                     O                                         e
                                                      tf                                      0
                                                        M                                    u
                                                         r                                  O
                                                          I                               lv
                                                           o8                            w
                                                             L                          A
                                                              Q2                      uO
                                                                w                   LD
                                                                 zvu              8x
                                                                    nGl        xMw
                                                                       XsohPTDx


License (MIT)



Permissions Conditions Limitations
Commercial use License and copyright notice Liability
Distribution Warranty
Modification
Private use
MIT License

Copyright (c) 2021 Ivan (GitHub: ivanl-exe, E-Mail: [email protected])

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.
Owner
Ivan
Advanced programmer, envisioning the future of technology and influence from Web3 and blockchains.
Ivan
Program for analyzing shadows from Cassini images

Moons: An Analysis Module for Vicar Files General This packages/program was created for my bachelor's thesis for the Astronomy department at Universit

Joni 1 Jul 16, 2021
Program designed to mass edit and watermark all photos in a directory

Photographer-All-In-One This is a program designed for photographers to mass edit or watermark photos (.jpg || .png) You can run this program from any

Brad Martin 2 Nov 23, 2021
Sombra is simple Raytracer written in pure Python.

Sombra Sombra is simple Raytracer written in pure Python. It's main purpose is to help understand how raytracing works with a clean code. If you are l

Hernaldo Jesus Henriquez Nuñez 10 Jul 16, 2022
python binding for libvips using cffi

README PyPI package: https://pypi.python.org/pypi/pyvips conda package: https://anaconda.org/conda-forge/pyvips We have formatted docs online here: ht

libvips 467 Dec 30, 2022
An ascii art generator that's actually good. Does edge detection and selects the most appropriate characters.

Ascii Artist An ascii art generator that's actually good. Does edge detection and selects the most appropriate characters. Installing Installing with

18 Jan 03, 2023
Blender addon - convert empty image reference to image plane

Reference to image plane Convert reference images to a textured image mesh plane. As if it was imported with import image as plane Use on drag'n'dropp

Samuel Bernou 6 Nov 25, 2022
Image comparison slider component for Streamlit

Streamlit Image Comparison Component A simple Streamlit Component to compare images with a slider in Streamlit apps using Knightlab's JuxtaposeJS. It

fatih 109 Dec 23, 2022
image-processing exercises.

image_processing Assignment 21 Checkered Board Create a chess table using numpy and opencv. view: Color Correction Reverse black and white colors with

Benyamin Zojaji 25 Dec 15, 2022
An agnostic Canvas API for the browser-less and insane

Apollo An agnostic Canvas API for the browser-less and mildly insane. Project Apollo is a Pythonic re-imagining of HTML Canvas element implementati

1 Jan 13, 2022
Pnuemonia Normal detection by using XRay images.

Pnuemonia Normal detection by using XRay images. Got image datas from kaggle(link is given in sources.txt file) also normal xray images from other site (also link is given) in order to avoid data dis

Zarina 1 Feb 28, 2022
Me cleaner - Tool for partial deblobbing of Intel ME/TXE firmware images

me_cleaner me_cleaner is a Python script able to modify an Intel ME firmware image with the final purpose of reducing its ability to interact with the

Nicola Corna 4.1k Jan 08, 2023
Extracts random colours from an image

EXTRACT COLOURS This repo contains all the project files. Project Description A Program that extracts 10 random colours from an image and saves the rg

David .K. Danso 3 Dec 13, 2021
Extracts dominating colors from an image and presents them as a palette.

ColorPalette A simple web app to extract dominant colors from an image. Demo Live View it live at : https://colorpalettedemo.herokuapp.com/ You can de

Mayank Nader 214 Dec 29, 2022
A tool to maintain an archive/mirror of your Google Photos library for backup purposes.

Google Photos Archiver Updated Instructions 8/9/2021 Version 2.0.6 Instructions: Download the script (exe or python script listed below) Follow the in

Nick Dawson 116 Jan 03, 2023
🎨 Generate and change color-schemes on the fly.

Generate and change color-schemes on the fly. Pywal is a tool that generates a color palette from the dominant colors in an image. It then applies the

dylan 6.9k Jan 03, 2023
💯 Watermark your images with one line of command

Watermarker 💯 Watermark your images with one line of command 🧐 $ pip3 install

Orhan Emre Dikicigil 3 May 01, 2022
QR-Generator - An awesome QR Generator to create or customize your QR's

QR Generator An awesome QR Generator to create or customize your QR's! Table of

Tristán 1 Jan 28, 2022
Group of interfaces interesting for users

Project: Interface to create GIF animation based on Fourier Series.

5 Aug 17, 2021
👷 Build images with images

👷 Build images with images. About Tiler is a tool to create an image using all kinds of other smaller images (tiles). It is different from other mosa

5.5k Jan 03, 2023