A fast python implementation of the SimHash algorithm.

Overview

FLoC SimHash

This Python package provides hashing algorithms for computing cohort ids of users based on their browsing history. As such, it may be used to compute cohort ids of users following Google's Federated Learning of Cohorts (FLoC) proposal.

The FLoC proposal is an important part of The Privacy Sandbox, which is Google's replacement for third-party cookies. FLoC will enable interest-based advertising, thus preserving an important source of monetization for today's web.

The main idea, as outlined in the FLoC whitepaper, is to replace user cookie ids, which enable user-targeting across multiple sites, by cohort ids. A cohort would consist of a set of users sharing similar browsing behaviour. By targeting a given cohort, advertisers can ensure that relevant ads are shown while user privacy is preserved by a hiding in the pack mechanism.

The FLoC whitepaper mentions several mechanisms to map users to cohorts, with varying amounts of centralized information. The algorithms currently being implemented in Google Chrome as a POC are methods based on SimHash, which is a type of locality-sensitive hashing initially introduced for detecting near-duplicate documents.

Contents

Installation

The floc-simhash package is available at PyPI. Install using pip as follows.

pip install floc-simhash

The package requires python>=3.7 and will install scikit-learn as a dependency.

Usage

The package provides two main classes.

  • SimHash, applying the SimHash algorithm on the md5 hashes of tokens in the given document.

  • SimHashTransformer, applying the SimHash algorithm to a document vectorization as part of a scikit-learn pipeline

Finally, there is a third class available:

  • SortingSimHash, which performs the SortingLSH algorithm by first applying SimHash and then clipping the resulting hashes to a given precision.

Individual document-based SimHash

The SimHash class provides a way to calculate the SimHash of any given document, without using any information coming from other documents.

In this case, the document hash is computed by looking at md5 hashes of individual tokens. We use:

  • The implementation of the md5 hashing algorithm available in the hashlib module in the Python standard library.

  • Bitwise arithmetic for fast computations of the document hash from the individual hashed tokens.

The program below, for example, will print the following hexadecimal string: cf48b038108e698418650807001800c5.

from floc_simhash import SimHash

document = "Lorem ipsum dolor sit amet consectetur adipiscing elit"
hashed_document = SimHash(n_bits=128).hash(document)

print(hashed_document)

An example more related to computing cohort ids: the following program computes the cohort id of a user by applying SimHash to the document formed by the pipe-separated list of domains in the user browsing history.

from floc_simhash import SimHash

document = "google.com|hybridtheory.com|youtube.com|reddit.com"
hasher = SimHash(n_bits=128, tokenizer=lambda x: x.split("|"))
hashed_document = hasher.hash(document)

print(hashed_document)

The code above will print the hexadecimal string: 14dd1064800880b40025764cd0014715.

Providing your own tokenizer

The SimHash constructor will split the given document according to white space by default. However, it is possible to pass any callable that parses a string into a list of strings in the tokenizer parameter. We have provided an example above where we pass tokenizer=lambda x: x.split("|").

A good example of a more complex tokenization could be passing the word tokenizer in NLTK. This would be a nice choice if we wished to compute hashes of text documents.

Using the SimHashTransformer in scikit-learn pipelines

The approach to SimHash outlined in the FLoC Whitepaper consists of choosing random unit vectors and working on already vectorized data.

The choice of a random unit vector is equivalent to choosing a random hyperplane in feature space. Choosing p random hyperplanes partitions the feature space into 2^p regions. Then, a p-bit SimHash of a vector encodes the region to which it belongs.

It is reasonable to expect similar documents to have the same hash, provided the vectorization respects the given notion of similarity.

Two vectorizations are discussed in the aforementioned whitepaper: one-hot and tf-idf; they are available in scikit-learn.

The SimHashTransformer supplies a transformer (implementing the fit and transform methods) that can be used directly on the output of any of these two vectorizers in order to obtain hashes.

For example, given a 1d-array X containing strings, each of them corresponding to a concatenation of the domains visited by a given user and separated by "|", the following code will store in y the cohort id of each user, using one-hot encoding and a 32-bit SimHash.

from sklearn.feature_extraction.text import CountVectorizer
from sklearn.pipeline import Pipeline

from floc_simhash import SimHashTransformer


X = [
    "google.com|hybridtheory.com|youtube.com|reddit.com",
    "google.com|youtube.com|reddit.com",
    "github.com",
    "google.com|github.com",
]

one_hot_simhash = Pipeline(
    [
        ("vect", CountVectorizer(tokenizer=lambda x: x.split("|"), binary=True)),
        ("simhash", SimHashTransformer(n_bits=32)),
    ]
)

y = one_hot_simhash.fit_transform(X)

After running this code, the value of y would look similar to the following (expect same lengths; actual hash values depend on the choice of random vectors during fit):

['0xd98c7e93' '0xd10b79b3' '0x1085154d' '0x59cd150d']

Caveats

  • The implementation works on the sparse matrices output by CountVectorizer and TfidfTransformer, in order to manage memory efficiently.

  • At the moment, the choice of precision in the numpy arrays results in overflow errors for p >= 64. While we are waiting for implementation details of the FLoC POCs, the first indications hint at choices around p = 50.

Development

This project uses poetry for managing dependencies.

In order to clone the repository and run the unit tests, execute the following steps on an environment with python>=3.7.

git clone https://github.com/hybridtheory/floc-simhash.git
cd floc-simhash
poetry install
pytest

The unit tests are property-based, using the hypothesis library. This allows for algorithm veritication against hundreds or thousands of random generated inputs.

Since running many examples may lengthen the test suite runtime, we also use pytest-xdist in order to parallelize the tests. For example, the following call will run up to 1000 examples for each test with parallelism 4.

pytest -n 4 --hypothesis-profile=ci
Owner
Hybrid Theory
(formerly Affectv)
Hybrid Theory
Zipline, a Pythonic Algorithmic Trading Library

Zipline, a Pythonic Algorithmic Trading Library

Stefan Jansen 463 Jan 08, 2023
An open source algorithm and dataset for finding poop in pictures.

The shitspotter module is where I will be work on the "shitspotter" poop-detection algorithm and dataset. The primary goal of this work is to allow for the creation of a phone app that finds where yo

Jon Crall 29 Nov 29, 2022
PickMush - A mini study/project on boosting algorithm

PickMush A mini project implementing Boosting Author Shashwat Vaibhav What does it do? Classifies whether Mushroom is edible or is non-edible (binary

Shashwat Vaibahav 3 Nov 08, 2022
A minimal implementation of the IQRM interference flagging algorithm for radio pulsar and transient searches

A minimal implementation of the IQRM interference flagging algorithm for radio pulsar and transient searches. This module only provides the algorithm that infers a channel mask from some spectral sta

Vincent Morello 6 Nov 29, 2022
8-puzzle-solver with UCS, ILS, IDA* algorithm

Eight Puzzle 8-puzzle-solver with UCS, ILS, IDA* algorithm pre-usage requirements python3 python3-pip virtualenv prepare enviroment virtualenv -p pyth

Mohsen Arzani 4 Sep 22, 2021
A tictactoe where you never win, implemented using minimax algorithm

Unbeatable_TicTacToe A tictactoe where you never win, implemented using minimax algorithm Requirements Make sure you have the pygame module along with

Jessica Jolly 3 Jul 28, 2022
BCI datasets and algorithms

Brainda Welcome! First and foremost, Welcome! Thank you for visiting the Brainda repository which was initially released at this repo and reorganized

52 Jan 04, 2023
An implementation of ordered dithering algorithm in python as multimedia course project

One way of minimizing the size of an image is to simply reduce the number of bits you use to represent each pixel.

7 Dec 02, 2022
Provide player's names and mmr and generate mathematically balanced teams

Lollo's matchmaking algorithm Provide player's names and mmr and generate mathematically balanced teams How to use Fill the input.json file with your

4 Aug 04, 2022
Policy Gradient Algorithms (One Step Actor Critic & PPO) from scratch using Numpy

Policy Gradient Algorithms From Scratch (NumPy) This repository showcases two policy gradient algorithms (One Step Actor Critic and Proximal Policy Op

1 Jan 17, 2022
A fast, pure python implementation of the MuyGPs Gaussian process realization and training algorithm.

Fast implementation of the MuyGPs Gaussian process hyperparameter estimation algorithm MuyGPs is a GP estimation method that affords fast hyperparamet

Lawrence Livermore National Laboratory 13 Dec 02, 2022
A simple python implementation of A* and bfs algorithm solving Eight-Puzzle

A simple python implementation of A* and bfs algorithm solving Eight-Puzzle

2 May 22, 2022
A raw implementation of the nearest insertion algorithm to resolve TSP problems in a TXT format.

TSP-Nearest-Insertion A raw implementation of the nearest insertion algorithm to resolve TSP problems in a TXT format. Instructions Load a txt file wi

sjas_Phantom 1 Dec 02, 2021
A litle algorithm that i made for transform a picture in a spreadsheet.

PicsToSheets How it works? It is an algorithm designed to transform an image into a spreadsheet file. this converts image pixels to color cells of she

Guilherme de Oliveira 1 Nov 12, 2021
Machine Learning algorithms implementation.

Machine Learning Algorithms Machine Learning algorithms implementation. What can I find here? ML Algorithms KNN K-Means-Clustering SVM (MultiClass) Pe

David Levin 1 Dec 10, 2021
Implementation for Evolution of Strategies for Cooperation

Moraliser Implementation for Evolution of Strategies for Cooperation Dependencies You will need a python3 (= 3.8) environment to run the code. Before

1 Dec 21, 2021
Greedy Algorithm-Problem Solving

MAX-MIN-Hackrrank-Python-Solution Greedy Algorithm-Problem Solving You will be given a list of integers, , and a single integer . You must create an a

Mahesh Nagargoje 3 Jul 13, 2021
Optimal skincare partition finder using graph theory

Pigment The problem of partitioning up a skincare regime into parts such that each part does not interfere with itself is equivalent to the minimal cl

Jason Nguyen 1 Nov 22, 2021
Wordle-solver - A program that solves a Wordle using a simple algorithm

Wordle Solver A program that solves a Wordle using a simple algorithm. To see it

Luc Bouchard 3 Feb 13, 2022
Leveraging Unique CPS Properties to Design Better Privacy-Enhancing Algorithms

Differential_Privacy_CPS Python implementation of the research paper Leveraging Unique CPS Properties to Design Better Privacy-Enhancing Algorithms Re

Shubhesh Anand 2 Dec 14, 2022