Inferoxy is a service for quick deploying and using dockerized Computer Vision models.

Overview

Inferoxy

codecov

What is it?

Inferoxy is a service for quick deploying and using dockerized Computer Vision models. It's a core of EORA's Computer Vision platform Vision Hub that runs on top of AWS EKS.

Why use it?

You should use it if:

  • You want to simplify deploying Computer Vision models with an appropriate Data Science stack to production: all you need to do is to build a Docker image with your model including any pre- and post-processing steps and push it into an accessible registry
  • You have only one machine or cluster for inference (CPU/GPU)
  • You want automatic batching for multi-GPU/multi-node setup
  • Model versioning

Architecture

Overall architecture

Inferoxy is built using message broker pattern.

  • Roughly speaking, it accepts user requests through different interfaces which we call "bridges". Multiple bridges can run simultaneously. Current supported bridges are REST API, gRPC and ZeroMQ
  • The requests are carefully split into batches and processed on a single multi-GPU machine or a multi-node cluster
  • The models to be deployed are managed through Model Manager that communicates with Redis to store/retrieve models information such as Docker image URL, maximum batch size value, etc.

Batching

Batching

One of the core Inferoxy's features is the batching mechanism.

  • For batch processing it's taken into consideration that different models can utilize different batch sizes and that some models can process a series of batches from a specific user, e.g. for video processing tasks. The latter models are called "stateful" models while models which don't depend on user state are called "stateless"
  • Multiple copies of the same model can run on different machines while only one copy can run on the same GPU device. So, to increase models efficiency it's recommended to set batch size for models to be as high as possible
  • A user of the stateful model reserves the whole copy of the model and releases it when his task is finished.
  • Users of the stateless models can use the same copy of the model simultaneously
  • Numpy tensors of RGB images with metadata are all going through ZeroMQ to the models and the results are also read from ZeroMQ socket

Cluster management

Cluster

The cluster management consists of keeping track of the running copies of the models, load analysis, health checking and alerting.

Requirements

You can run Inferoxy locally on a single machine or k8s cluster. To run Inferoxy, you should have a minimum of 4GB RAM and CPU or GPU device depending on your speed/cost trade-off.

Basic commands

Local run

To run locally you should use Inferoxy Docker image. The last version you can find here.

docker pull public.registry.visionhub.ru/inferoxy:v1.0.4

After image is pulled we need to make basic configuration using .env file

# .env
CLOUD_CLIENT=docker
TASK_MANAGER_DOCKER_CONFIG_NETWORK=inferoxy
TASK_MANAGER_DOCKER_CONFIG_REGISTRY=
TASK_MANAGER_DOCKER_CONFIG_LOGIN=
TASK_MANAGER_DOCKER_CONFIG_PASSWORD=
MODEL_STORAGE_DATABASE_HOST=redis
MODEL_STORAGE_DATABASE_PORT=6379
MODEL_STORAGE_DATABASE_NUMBER=0
LOGGING_LEVEL=INFO

The next step is to create inferoxy Docker network.

docker network create inferoxy

Now we should run Redis in this network. Redis is needed to store information about your models.

docker run --network inferoxy --name redis redis:latest 

Create models.yaml file with simple set of models. You can read about models.yaml in documentation

stub:
  address: public.registry.visionhub.ru/models/stub:v5
  batch_size: 256
  run_on_gpu: False
  stateless: True

Now we can start Inferoxy:

docker run --env-file .env 
	-v /var/run/docker.sock:/var/run/docker.sock \
	-p 7787:7787 -p 7788:7788 -p 8000:8000 -p 8698:8698\
	--name inferoxy --rm \
	--network inferoxy \
	-v $(pwd)/models.yaml:/etc/inferoxy/models.yaml \
	public.registry.visionhub.ru/inferoxy:${INFEROXY_VERSION}

Documentation

You can find the full documentation here

Discord

Join our community in Discord server to discuss stuff related to Inferoxy usage and development

Rancher Kubernetes API compatible with RKE, RKE2 and maybe others?

kctl Rancher Kubernetes API compatible with RKE, RKE2 and maybe others? Documentation is WIP. Quickstart pip install --upgrade kctl Usage from lazycls

1 Dec 02, 2021
Python job scheduling for humans.

schedule Python job scheduling for humans. Run Python functions (or any other callable) periodically using a friendly syntax. A simple to use API for

Dan Bader 10.4k Jan 02, 2023
Learning and experimenting with Kubernetes

Kubernetes Experiments This repository contains code that I'm using to learn and experiment with Kubernetes. 1. Environment setup minikube kubectl doc

Richard To 10 Dec 02, 2022
Remote Desktop Protocol in Twisted Python

RDPY Remote Desktop Protocol in twisted python. RDPY is a pure Python implementation of the Microsoft RDP (Remote Desktop Protocol) protocol (client a

Sylvain Peyrefitte 1.6k Dec 30, 2022
Prometheus exporter for AWS Simple Queue Service (SQS)

Prometheus SQS Exporter Prometheus exporter for AWS Simple Queue Service (SQS) Metrics Metric Description ApproximateNumberOfMessages Returns the appr

Gabriel M. Dutra 0 Jan 31, 2022
Tools for writing awesome Fabric files

About fabtools includes useful functions to help you write your Fabric files. fabtools makes it easier to manage system users, packages, databases, et

1.3k Dec 30, 2022
GitGoat enables DevOps and Engineering teams to test security products intending to integrate with GitHub

GitGoat is an open source tool that was built to enable DevOps and Engineering teams to design and implement a sustainable misconfiguration prevention strategy. It can be used to test with products w

Arnica 149 Dec 22, 2022
Cobbler is a versatile Linux deployment server

Cobbler Cobbler is a Linux installation server that allows for rapid setup of network installation environments. It glues together and automates many

Cobbler 2.4k Dec 24, 2022
🐳 Docker templates for various languages.

Docker Deployment Templates One Stop repository for Docker Compose and Docker Templates for Deployment. Features Python (FastAPI, Flask) Screenshots D

CodeChef-VIT 6 Aug 28, 2022
A lobby boy will create a VPS server when you need one, and destroy it after using it.

Lobbyboy What is a lobby boy? A lobby boy is completely invisible, yet always in sight. A lobby boy remembers what people hate. A lobby boy anticipate

226 Dec 29, 2022
A collection of beginner-friendly DevOps content

mansion Mansion is just a testing repo for learners to commit into open source project. These are the steps you need to learn: Please do not edit thes

Bryan Lim 62 Nov 30, 2022
A Python library for the Docker Engine API

Docker SDK for Python A Python library for the Docker Engine API. It lets you do anything the docker command does, but from within Python apps – run c

Docker 6.1k Dec 31, 2022
strava-offline is a tool to keep a local mirror of Strava activities for further analysis/processing:

strava-offline Overview strava-offline is a tool to keep a local mirror of Strava activities for further analysis/processing: synchronizes metadata ab

Tomáš Janoušek 29 Dec 14, 2022
ZeroMQ bindings for Twisted

Twisted bindings for 0MQ Introduction txZMQ allows to integrate easily ØMQ sockets into Twisted event loop (reactor). txZMQ supports both CPython and

Andrey Smirnov 149 Dec 08, 2022
Google Kubernetes Engine (GKE) with a Snyk Kubernetes controller installed/configured for Snyk App

Google Kubernetes Engine (GKE) with a Snyk Kubernetes controller installed/configured for Snyk App This example provisions a Google Kubernetes Engine

Pas Apicella 2 Feb 09, 2022
Convenient tool to manage multiple VMs at once using libvirt

Convenient tool to manage multiple VMs at once using libvirt Installing To install the tool and its dependencies: pip install -e . Getting completion

Cedric Bosdonnat 13 Nov 11, 2022
Big data on k8s

# microsoft azure # https://docs.microsoft.com/en-us/cli/azure/install-azure-cli az account set --subscription [] az aks get-credentials --resource-g

Luan Moreno 22 Dec 24, 2022
This projects provides the documentation and the automation(code) for the Oracle EMEA WLA COA Demo UseCase.

COA DevOps Training UseCase This projects provides the documentation and the automation(code) for the Oracle EMEA WLA COA Demo UseCase. Demo environme

Cosmin Tudor 1 Jan 28, 2022
Containerize a python web application

containerize a python web application introduction this document is part of GDSC at the university of bahrain you don't need to follow along, fell fre

abdullah mosibah 1 Oct 19, 2021
Webinar oficial Zabbix Brasil. Uma série de 4 aulas sobre API do Zabbix.

Repositório de scripts do Webinar de API do Zabbix Webinar oficial Zabbix Brasil. Uma série de 4 aulas sobre API do Zabbix. Nossos encontros [x] 04/11

Robert Silva 7 Mar 31, 2022