Project 4 Cloud DevOps Nanodegree

Overview

CircleCI

Project Overview

In this project, you will apply the skills you have acquired in this course to operationalize a Machine Learning Microservice API.

You are given a pre-trained, sklearn model that has been trained to predict housing prices in Boston according to several features, such as average rooms in a home and data about highway access, teacher-to-pupil ratios, and so on. You can read more about the data, which was initially taken from Kaggle, on the data source site. This project tests your ability to operationalize a Python flask app—in a provided file, app.py—that serves out predictions (inference) about housing prices through API calls. This project could be extended to any pre-trained machine learning model, such as those for image recognition and data labeling.

Project Tasks

Your project goal is to operationalize this working, machine learning microservice using kubernetes, which is an open-source system for automating the management of containerized applications. In this project you will:

  • Test your project code using linting
  • Complete a Dockerfile to containerize this application
  • Deploy your containerized application using Docker and make a prediction
  • Improve the log statements in the source code for this application
  • Configure Kubernetes and create a Kubernetes cluster
  • Deploy a container using Kubernetes and make a prediction
  • Upload a complete Github repo with CircleCI to indicate that your code has been tested

You can find a detailed project rubric, here.

The final implementation of the project will showcase your abilities to operationalize production microservices.


Setup the Environment

  • Create a virtualenv with Python 3.7 and activate it. Refer to this link for help on specifying the Python version in the virtualenv.
python3 -m pip install --user virtualenv
# You should have Python 3.7 available in your host. 
# Check the Python path using `which python3`
# Use a command similar to this one:
python3 -m virtualenv --python=<path-to-Python3.7> .devops
source .devops/bin/activate
  • Run make install to install the necessary dependencies

Running app.py

  1. Standalone: python app.py
  2. Run in Docker: ./run_docker.sh
  3. Run in Kubernetes: ./run_kubernetes.sh

Kubernetes Steps

  • Setup and Configure Docker locally
  • Setup and Configure Kubernetes locally
  • Create Flask app in Container
  • Run via kubectl Complete the Dockerfile Specify a working directory. Copy the app.py source code to that directory Install any dependencies in requirements.txt (do not delete the commented # hadolint ignore statement). Expose a port when the container is created; port 80 is standard. Specify that the app runs at container launch.

python3 -m venv ~/.devops source ~/.devops/bin/activate $ make lint

Run a Container & Make a Prediction Build the docker image from the Dockerfile; it is recommended that you use an optional --tag parameter as described in the build documentation. List the created docker images (for logging purposes). Run the containerized Flask app; publish the container’s port (80) to a host port (8080). Run the container using the run_docker.sh script created before following the steps above: $ . ./run_docker.sh After running the container we can able to run the prediction using the make_prediction.sh script:

$ . ./make_prediction.sh

Improve Logging & Save Output Add a prediction log statement Run the container and make a prediction to check the logs $ docker ps

CONTAINER ID IMAGE COMMAND CREATED STATUS PORTS NAMES a7d374ad73a6 api "/bin/bash" 36 minutes ago Exited (0) 28 minutes ago exciting_visvesvaraya 89fd55581a44 api "make run-app" 44 minutes ago Exited (2) 44 minutes ago brave_poitras f0b0ece5a9b5 api "make run-app" 46 minutes ago Exited (2) 46 minutes ago elated_brahmagupta a6fcd4749e44 api "make run-app" 48 minutes ago Exited (2) 48 minutes ago dreamy_agnesi

Upload the Docker Image Create a Docker Hub account Built the docker container with this command docker build --tag=<your_tag> . (Don't forget the tag name) Define a dockerpath which is <docker_hub_username>/<project_name> Authenticate and tag image Push your docker image to the dockerpath After complete all steps run the upload using the upload_docker.sh script:

$ . ./upload_docker.sh

Configure Kubernetes to Run Locally Install Kubernetes Install Minikube

Deploy with Kubernetes and Save Output Logs Define a dockerpath which will be “/path”, this should be the same name as your uploaded repository (the same as in upload_docker.sh) Run the docker container with kubectl; you’ll have to specify the container and the port List the kubernetes pods Forward the container port to a host port, using the same ports as before

After complete all steps run the kubernetes using run_kubernetes.sh script:

$ . ./run_kubernetes.sh After running the kubernete make a prediction using the make_prediction.sh script as we do in the second task.

Delete Cluster minikube delete

CircleCI Integration To create the file and folder on GitHub, click the Create new file button on the repo page and type .circleci/config.yml. You should now have in front of you a blank config.yml file in a .circleci folder.

Then you can paste the text from this yaml file into your file, and commit the change to your repository.

It may help to reference this CircleCI blog post on Github integration.

Changelog CI is a GitHub Action that enables a project to automatically generate changelogs

What is Changelog CI? Changelog CI is a GitHub Action that enables a project to automatically generate changelogs. Changelog CI can be triggered on pu

Maksudul Haque 106 Dec 25, 2022
Define and run multi-container applications with Docker

Docker Compose Docker Compose is a tool for running multi-container applications on Docker defined using the Compose file format. A Compose file is us

Docker 28.2k Jan 08, 2023
Ansible for DevOps examples.

Ansible for DevOps Examples This repository contains Ansible examples developed to support different sections of Ansible for DevOps, a book on Ansible

Jeff Geerling 6.6k Jan 08, 2023
A system for managing CI data for Mozilla projects

Treeherder Description Treeherder is a reporting dashboard for Mozilla checkins. It allows users to see the results of automatic builds and their resp

Mozilla 235 Dec 22, 2022
Nagios status monitor for your desktop.

Nagstamon Nagstamon is a status monitor for the desktop. It connects to multiple Nagios, Icinga, Opsview, Centreon, Op5 Monitor/Ninja, Checkmk Multisi

Henri Wahl 361 Jan 05, 2023
framework providing automatic constructions of vulnerable infrastructures

中文 | English 1 Introduction Metarget = meta- + target, a framework providing automatic constructions of vulnerable infrastructures, used to deploy sim

rambolized 685 Dec 28, 2022
strava-offline is a tool to keep a local mirror of Strava activities for further analysis/processing:

strava-offline Overview strava-offline is a tool to keep a local mirror of Strava activities for further analysis/processing: synchronizes metadata ab

Tomáš Janoušek 29 Dec 14, 2022
Manage your SSH like a boss.

--- storm is a command line tool to manage your ssh connections. features adding, editing, deleting, listing, searching across your SSHConfig. command

Emre Yılmaz 3.9k Jan 03, 2023
Ansible Collection: A collection of Ansible Modules and Lookup Plugins (MLP) from Linuxfabrik.

ansible_mlp An Ansible collection of Ansible Modules and Lookup Plugins (MLP) from Linuxfabrik. Ansible Bitwarden Item Lookup Plugin Returns a passwor

Linuxfabrik 2 Feb 07, 2022
Wiremind Kubernetes helper

Wiremind Kubernetes helper This Python library is a high-level set of Kubernetes Helpers allowing either to manage individual standard Kubernetes cont

Wiremind 3 Oct 09, 2021
More than 130 check plugins for Icinga and other Nagios-compatible monitoring applications. Each plugin is a standalone command line tool (written in Python) that provides a specific type of check.

Python-based Monitoring Check Plugins Collection This Enterprise Class Check Plugin Collection offers a package of more than 130 Python-based, Nagios-

Linuxfabrik 119 Dec 27, 2022
A collection of beginner-friendly DevOps content

mansion Mansion is just a testing repo for learners to commit into open source project. These are the steps you need to learn: Please do not edit thes

Bryan Lim 62 Nov 30, 2022
Run Oracle on Kubernetes with El Carro

El Carro is a new project that offers a way to run Oracle databases in Kubernetes as a portable, open source, community driven, no vendor lock-in container orchestration system. El Carro provides a p

Google Cloud Platform 205 Dec 30, 2022
GitGoat enables DevOps and Engineering teams to test security products intending to integrate with GitHub

GitGoat is an open source tool that was built to enable DevOps and Engineering teams to design and implement a sustainable misconfiguration prevention strategy. It can be used to test with products w

Arnica 149 Dec 22, 2022
A charmed operator for running PGbouncer on kubernetes.

operator-template Description TODO: Describe your charm in a few paragraphs of Markdown Usage TODO: Provide high-level usage, such as required config

Canonical 1 Dec 01, 2022
Hubble - Network, Service & Security Observability for Kubernetes using eBPF

Network, Service & Security Observability for Kubernetes What is Hubble? Getting Started Features Service Dependency Graph Metrics & Monitoring Flow V

Cilium 2.4k Jan 04, 2023
A tool to clone efficiently all the repos in an organization

cloner A tool to clone efficiently all the repos in an organization Installation MacOS (not yet tested) python3 -m venv .venv pip3 install virtualenv

Ramon 6 Apr 15, 2022
Find-Xss - Termux Kurulum Dosyası Eklendi Eğer Hata Alıyorsanız Lütfen Resmini Çekip İnstagramdan Bildiriniz

FindXss Waf Bypass Eklendi !!! PRODUCER: Saep UPDATER: Aser-Vant Download: git c

Aser 2 Apr 17, 2022
A Python Implementation for Git for learning

A pure Python implementation for Git based on Buliding Git

shidenggui 42 Jul 13, 2022