Datapane is the easiest way to create data science reports from Python.

Overview

Datapane

Datapane Teams | Documentation | API Docs | Changelog | Twitter | Blog

Pip Downloads Latest release Conda (channel only)

Share interactive plots and data in 3 lines of Python.

Datapane is a Python library for building interactive reports for your end-users in seconds.

Import our library into your existing script/notebook and build reports from pandas Dataframes, plots from Python viz libraries, Markdown, as well as data exploration and layout components.

Export your reports as standalone HTML documents, or share and embed them via our free hosted platform.

Getting Started

Installing Datapane

The best way to install Datapane is through pip or conda.

pip

$ pip3 install -U datapane
$ datapane hello-world

conda

$ conda install -c conda-forge "datapane>=0.12.0"
$ datapane hello-world

Datapane also works well in hosted Jupyter environments such as Colab or Binder, where you can install as follows:

!pip3 install --quiet datapane
!datapane signup

Explainer Video

Datapane.Public.Tutorial.mp4

Hello world

Let's say you wanted to create a report with an interactive plot and table viewer:

import altair as alt
from vega_datasets import data
import datapane as dp

source = data.cars()

plot1 = alt.Chart(source).mark_circle(size=60).encode(
  x='Horsepower',
  y='Miles_per_Gallon',
  color='Origin',
  tooltip=['Name', 'Origin', 'Horsepower', 'Miles_per_Gallon']
).interactive()

dp.Report(
    dp.Text("## Hello world!"),
    dp.Plot(plot1),
    dp.DataTable(source)
).save(path="Hello_world.html")

This will package a standalone HTML document that looks as follows:

Simple Datapane report example with text, plot and table

Your users can scroll & zoom on the chart, filter and download the tabular data.

Advanced Layout Options

Datapane is great for presenting complex data and provides many components for creating advanced interactive layouts. Let's you need to write a technical document:

import altair as alt
from vega_datasets import data
import datapane as dp

source = data.cars()
plot1 = alt.Chart(source).mark_circle(size=60).encode(
    x='Horsepower',
    y='Miles_per_Gallon',
    color='Origin',
    tooltip=['Name', 'Origin', 'Horsepower', 'Miles_per_Gallon']
).interactive()

dp.Report(
    dp.Page(title="Charts and analysis",
            blocks=[
                dp.Formula("x^2 + y^2 = z^2"),
                dp.Group(
                    dp.BigNumber(
                        heading="Number of percentage points",
                        value="84%",
                        change="2%",
                        is_upward_change=True
                    ),
                    dp.BigNumber(
                        heading="Simple Statistic",
                        value=100
                    ), columns=2,
                ),
                dp.Select(blocks=[
                    dp.Plot(plot1, label="Plot"),
                    dp.HTML('''<iframe width="560" height="315" src="https://www.youtube.com/embed/dQw4w9WgXcQ" title="YouTube video player" frameborder="0" allow="accelerometer; autoplay; clipboard-write; encrypted-media; gyroscope; picture-in-picture" allowfullscreen></iframe>''', label="Video")
                ]),
            ]),
    dp.Page(title="Dataset", blocks=[
            dp.DataTable(source)
    ])
).save(path="Complex_layout.html", open=True)

Layout blocks like dp.Select, dp.Group and dp.Page allow you to highlight key points without sacrificing detail, while content blocks like dp.HTML and dp.Formula (LaTeX) can enrich your report. The final result looks like this:

Complex Datapane report example

Check out the full list of blocks in our documentation.

Sharing Reports

Sign up for a free account

In addition to saving documents locally, you can host, share and embed reports via Datapane Studio.

To get your free API key, run the following command in your terminal to sign up via email/OAuth:

$ datapane signup

If you're using Jupyter, run !datapane signup instead.

Next, in your Python notebook or script simply change the save function to upload on your report:

dp.Report(
 ...
#).save(path="hello_world.html")
).upload(name="Hello world")

Your Studio account comes with the following:

  • Unlimited public reports - great for embedding into places like Medium, Reddit, or your own website (see here)
  • 5 private reports - share these via email within your organization

Featured Examples

Here a few samples of the top reports created by the Datapane community. To see more, check out our gallery section.

Teams

Datapane Teams is our plan for teams, which adds the following features on top of our open-source and Studio plans:

  • Private domain and organizational workspace
  • Multiple projects
  • Client-sharing functionality
  • Unlimited Datapane Apps
  • Custom App packages and environments
  • Secure Warehouse & API Integration
  • File and Dataset APIs
  • Private Slack or Teams support

Datapane Teams is offered as both a managed SaaS service and an on-prem install. For more information, see the documentation. You can find pricing here.

Next Steps

Analytics

By default, the Datapane Python library collects error reports and usage telemetry. This is used by us to help make the product better and to fix bugs. If you would like to disable this, simply create a file called no_analytics in your datapane config directory, e.g.

Linux

$ mkdir -p ~/.config/datapane && touch ~/.config/datapane/no_analytics

macOS

$ mkdir -p ~/Library/Application\ Data/datapane && touch ~/Library/Application\ Data/no_analytics

Windows (PowerShell)

PS> mkdir ~/AppData/Roaming/datapane -ea 0
PS> ni ~/AppData/Roaming/datapane/no_analytics -ea 0

You may need to try ~/AppData/Local instead of ~/AppData/Roaming on certain Windows configurations depending on the type of your user-account.

Joining the community

Looking to get answers to questions or engage with us and the wider community? Check out our GitHub Discussions board.

Submit feature requests, issues, and bug reports on this GitHub repo.

Open-source, not open-contribution

Datapane is currently closed to external code contributions. However, we are tremendously grateful to the community for any feature requests, ideas, discussions, and bug reports.

Owner
Datapane
Create and share interactive reports from Python
Datapane
Declarative statistical visualization library for Python

Altair http://altair-viz.github.io Altair is a declarative statistical visualization library for Python. With Altair, you can spend more time understa

Altair 8k Jan 05, 2023
Time series visualizer is a flexible extension that provides filling world map by country from real data.

Time-series-visualizer Time series visualizer is a flexible extension that provides filling world map by country from csv or json file. You can know d

Long Ng 3 Jul 09, 2021
Editor and Presenter for Manim Generated Content.

Editor and Presenter for Manim Generated Content. Take a look at the Working Example. More information can be found on the documentation. These Browse

Manim Community 149 Dec 29, 2022
python partial dependence plot toolbox

PDPbox python partial dependence plot toolbox Motivation This repository is inspired by ICEbox. The goal is to visualize the impact of certain feature

Li Jiangchun 723 Jan 07, 2023
Sparkling Pandas

SparklingPandas SparklingPandas aims to make it easy to use the distributed computing power of PySpark to scale your data analysis with Pandas. Sparkl

366 Oct 27, 2022
Learn Basic to advanced level Data visualisation techniques from this Repository

Data visualisation Hey, You can learn Basic to advanced level Data visualisation techniques from this Repository. Data visualization is the graphic re

Shashank dwivedi 16 Jan 03, 2023
A tool for creating Toontown-style nametags in Panda3D

Toontown-Nametag Toontown-Nametag is a tool for creating Toontown Online/Toontown Rewritten-style nametags in Panda3D. It contains a function, createN

BoggoTV 2 Dec 23, 2021
哔咔漫画window客户端,界面使用PySide2,已实现分类、搜索、收藏夹、下载、在线观看、waifu2x等功能。

picacomic-windows 哔咔漫画window客户端,界面使用PySide2,已实现分类、搜索、收藏夹、下载、在线观看等功能。 功能介绍 登陆分流,还原安卓端的三个分流入口 分类,搜索,排行,收藏夹使用同一的逻辑,滚轮下滑自动加载下一页,双击打开 漫画详情,章节列表和评论列表 下载功能,目

1.8k Dec 31, 2022
A Python toolbox for gaining geometric insights into high-dimensional data

"To deal with hyper-planes in a 14 dimensional space, visualize a 3D space and say 'fourteen' very loudly. Everyone does it." - Geoff Hinton Overview

Contextual Dynamics Laboratory 1.8k Dec 29, 2022
Pebble is a stat's visualization tool, this will provide a skeleton to develop a monitoring tool.

Pebble is a stat's visualization tool, this will provide a skeleton to develop a monitoring tool.

Aravind Kumar G 2 Nov 17, 2021
A guide for using Bootstrap 5 classes in Dash Bootstrap Components V1

dash-bootstrap-cheatsheet This handy interactive cheatsheet makes it easy to use the Bootstrap 5 classes with your Dash app made with the latest versi

10 Dec 22, 2022
visualize_ML is a python package made to visualize some of the steps involved while dealing with a Machine Learning problem

visualize_ML visualize_ML is a python package made to visualize some of the steps involved while dealing with a Machine Learning problem. It is build

Ayush Singh 164 Dec 12, 2022
Minimal Ethereum fee data viewer for the terminal, contained in a single python script.

Minimal Ethereum fee data viewer for the terminal, contained in a single python script. Connects to your node and displays some metrics in real-time.

48 Dec 05, 2022
A little word cloud generator in Python

Linux macOS Windows PyPI word_cloud A little word cloud generator in Python. Read more about it on the blog post or the website. The code is tested ag

Andreas Mueller 9.2k Dec 30, 2022
Streamlit component for Let's-Plot visualization library

streamlit-letsplot This is a work-in-progress, providing a convenience function to plot charts from the Lets-Plot visualization library. Example usage

Randy Zwitch 9 Nov 03, 2022
Create artistic visualisations with your exercise data (Python version)

strava_py Create artistic visualisations with your exercise data (Python version). This is a port of the R strava package to Python. Examples Facets A

Marcus Volz 53 Dec 28, 2022
Implementation of SOMs (Self-Organizing Maps) with neighborhood-based map topologies.

py-self-organizing-maps Simple implementation of self-organizing maps (SOMs) A SOM is an unsupervised method for learning a mapping from a discrete ne

Jonas Grebe 6 Nov 22, 2022
Create matplotlib visualizations from the command-line

MatplotCLI Create matplotlib visualizations from the command-line MatplotCLI is a simple utility to quickly create plots from the command-line, levera

Daniel Moura 46 Dec 16, 2022
Simple Inkscape Scripting

Simple Inkscape Scripting Description In the Inkscape vector-drawing program, how would you go about drawing 100 diamonds, each with a random color an

Scott Pakin 140 Dec 27, 2022
I'm doing Genuary, an aritifiacilly generated month to build code that make beautiful things

Genuary 2022 I'm doing Genuary, an aritifiacilly generated month to build code that make beautiful things. Every day there is a new prompt for making

Joaquín Feltes 1 Jan 10, 2022