TedEval: A Fair Evaluation Metric for Scene Text Detectors

Overview

TedEval: A Fair Evaluation Metric for Scene Text Detectors

Official Python 3 implementation of TedEval | paper | slides

Chae Young Lee, Youngmin Baek, and Hwalsuk Lee.

Clova AI Research, NAVER Corp.

Overview

We propose a new evaluation metric for scene text detectors called TedEval. Through separate instance-level matching policy and character-level scoring policy, TedEval solves the drawbacks of previous metrics such as IoU and DetEval. This code is based on ICDAR15 official evaluation code.

Methodology

1. Mathcing Policy

  • Non-exclusively gathers all possible matches of not only one-to-one but also one-to-many and many-to-one.
  • The threshold of both area recall and area precision are set to 0.4.
  • Multiline is identified and rejected when |min(theta, 180 - theta)| > 45 from Fig. 2.

2. Scoring Policy

We compute Pseudo Character Center (PCC) from word-level bounding boxes and penalize matches when PCCs are missing or overlapping.

Sample Evaluation

Experiments

We evaluated state-of-the-art scene text detectors with TedEval on two benchmark datasets: ICDAR 2013 Focused Scene Text (IC13) and ICDAR 2015 Incidental Scene Text (IC15). Detectors are listed in the order of published dates.

ICDAR 2013

Detector Date (YY/MM/DD) Recall (%) Precision (%) H-mean (%)
CTPN 16/09/12 82.1 92.7 87.6
RRPN 17/03/03 89.0 94.2 91.6
SegLink 17/03/19 65.6 74.9 70.0
EAST 17/04/11 77.7 87.1 82.5
WordSup 17/08/22 87.5 92.2 90.2
PixelLink 18/01/04 84.0 87.2 86.1
FOTS 18/01/05 91.5 93.0 92.6
TextBoxes++ 18/01/09 87.4 92.3 90.0
MaskTextSpotter 18/07/06 90.2 95.4 92.9
PMTD 19/03/28 94.0 95.2 94.7
CRAFT 19/04/03 93.6 96.5 95.1

ICDAR 2015

Detector Date (YY/MM/DD) Recall (%) Precision (%) H-mean (%)
CTPN 16/09/12 85.0 81.1 67.8
RRPN 17/03/03 79.5 85.9 82.6
SegLink 17/03/19 77.1 83.9 80.6
EAST 17/04/11 82.5 90.0 86.3
WordSup 17/08/22 83.2 87.1 85.2
PixelLink 18/01/04 85.7 86.1 86.0
FOTS 18/01/05 89.0 93.4 91.2
TextBoxes++ 18/01/09 82.4 90.8 86.5
MaskTextSpotter 18/07/06 82.5 91.8 86.9
PMTD 19/03/28 89.2 92.8 91.0
CRAFT 19/04/03 88.5 93.1 90.9

Frequency

Getting Started

Clone repository

git clone https://github.com/clovaai/TedEval.git

Requirements

  • python 3
  • python 3.x Polygon, Bottle, Pillow
# install
pip3 install Polygon3 bottle Pillow

Supported Annotation Type

  • LTRB(xmin, ymin, xmax, ymax)
  • QUAD(x1, y1, x2, y2, x3, y3, x4, y4)

Evaluation

Prepare data

The ground truth and the result data should be text files, one for each sample. Note that the naming rule of each text file is that there must be img_{number} in the filename and that the number indicate the image sample.

# gt/gt_img_38.txt
644,101,932,113,932,168,643,156,[email protected]
477,138,487,139,488,149,477,148,###
344,131,398,130,398,149,344,149,###
1195,148,1277,138,1277,177,1194,187,###
23,270,128,267,128,282,23,284,###

# result/res_img_38.txt
644,101,932,113,932,168,643,156,{Transcription},{Confidence}
477,138,487,139,488,149,477,148
344,131,398,130,398,149,344,149
1195,148,1277,138,1277,177,1194,187
23,270,128,267,128,282,23,284

Compress these text files.

zip gt.zip gt/*
zip result.zip result/*

Refer to gt/result.zip and gt/gt_*.zip for examples.

Run stand-alone evaluation

python script.pyg=gt/gt.zips=result/result.zip
  • Locate the path of GT and submission file using the flag -g and -s, respectively.
  • QUAD annotation type is used as default. To switch between {QUAD, LTRB}, add -p='{"LTRB" = False}' in the command or directly modify the default_evaluation_params() function in script.py.
  • If there are transcription or confidence values in your submission file, add -p='{"CONFIDENCES" = True} or -p='{"TRANSCRIPTION" = True}'.

Run Visualizer

python web.py
  • Place the zip file of images and GTs of the dataset named images.zip and gt.zip, respectively, in the gt directory.
  • Create an empty directory name output. This is where the DB, submission files, and result files will be created.
  • You can change the host and port number in the final line of web.py.

The file structure should then be:

.
├── gt
│   ├── gt.zip
│   └── images.zip
├── output   # empty dir
├── script.py
├── web.py
├── README.md
└── ...

Citation

@article{lee2019tedeval,
  title={TedEval: A Fair Evaluation Metric for Scene Text Detectors},
  author={Lee, Chae Young and Baek, Youngmin and Lee, Hwalsuk},
  journal={arXiv preprint arXiv:1907.01227},
  year={2019}
}

Contact us

We welcome any feedbacks to our metric. Please contact the authors via {cylee7133, youngmin.baek, hwalsuk.lee}@gmail.com. In case of code errors, open an issue and we will get to you.

License

Copyright (c) 2019-present NAVER Corp.

 Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

 The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.

 THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.
Owner
Clova AI Research
Open source repository of Clova AI Research, NAVER & LINE
Clova AI Research
OCR, Scene-Text-Understanding, Text Recognition

Scene-Text-Understanding Survey [2015-PAMI] Text Detection and Recognition in Imagery: A Survey paper [2014-Front.Comput.Sci] Scene Text Detection and

Alan Tang 354 Dec 12, 2022
Code for the paper STN-OCR: A single Neural Network for Text Detection and Text Recognition

STN-OCR: A single Neural Network for Text Detection and Text Recognition This repository contains the code for the paper: STN-OCR: A single Neural Net

Christian Bartz 496 Jan 05, 2023
PyQT5 app that colorize black & white pictures using CNN(use pre-trained model which was made with OpenCV)

About PyQT5 app that colorize black & white pictures using CNN(use pre-trained model which was made with OpenCV) Colorizor Приложение для проекта Yand

1 Apr 04, 2022
Fully-automated scripts for collecting AI-related papers

AI-Paper-Collector Web demo: https://ai-paper-collector.vercel.app/ (recommended) Colab notebook: here Motivation Fully-automated scripts for collecti

772 Dec 30, 2022
A list of hyperspectral image super-solution resources collected by Junjun Jiang

A list of hyperspectral image super-resolution resources collected by Junjun Jiang. If you find that important resources are not included, please feel free to contact me.

Junjun Jiang 301 Jan 05, 2023
Um simples projeto para fazer o reconhecimento do captcha usado pelo jogo bombcrypto

CaptchaSolver - LEIA ISSO 😓 Para iniciar o codigo: pip install -r requirements.txt python captcha_solver.py Se você deseja pegar ver o resultado das

Kawanderson 50 Mar 21, 2022
A set of workflows for corpus building through OCR, post-correction and normalisation

PICCL: Philosophical Integrator of Computational and Corpus Libraries PICCL offers a workflow for corpus building and builds on a variety of tools. Th

Language Machines 41 Dec 27, 2022
Motion detector, Full body detection, Upper body detection, Cat face detection, Smile detection, Face detection (haar cascade), Silverware detection, Face detection (lbp), and Sending email notifications

Security camera running OpenCV for object and motion detection. The camera will send email with image of any objects it detects. It also runs a server that provides web interface with live stream vid

Peace 10 Jun 30, 2021
Text layer for bio-image annotation.

napari-text-layer Napari text layer for bio-image annotation. Installation You can install using pip: pip install napari-text-layer Keybindings and m

6 Sep 29, 2022
Script para controlar o movimento do mouse usando Python e openCV com câmera em tempo real que detecta pontos de referência da mão, rastreia padrões de gestos em vez de um mouse físico.

mouserController Script para controlar o movimento do mouse usando Python e openCV com câmera em tempo real que detecta pontos de referência da mão, r

Vinícius Azevedo 6 Jun 28, 2022
This is an API written in python that uses FastAPI. It is a simple API that can detect discord tokens in Images.

Welcome This is an API written in python that uses FastAPI. It is a simple API that can detect discord tokens in Images. Installation There are curren

8 Jul 29, 2022
Python-based tools for document analysis and OCR

ocropy OCRopus is a collection of document analysis programs, not a turn-key OCR system. In order to apply it to your documents, you may need to do so

OCRopus 3.2k Dec 31, 2022
chineseocr/table_line 表格线检测模型pytorch版

table_line_pytorch chineseocr/table_detct 表格线检测模型table_line pytorch版 原项目github: https://github.com/chineseocr/table-detect 1、模型转换 下载原项目table_detect模型文

1 Oct 21, 2021
An unofficial implementation of the paper "AutoVC: Zero-Shot Voice Style Transfer with Only Autoencoder Loss".

AutoVC: Zero-Shot Voice Style Transfer with Only Autoencoder Loss This is an unofficial implementation of AutoVC based on the official one. The reposi

Chien-yu Huang 27 Jun 16, 2022
Dirty, ugly, and hopefully useful OCR of Facebook Papers docs released by Gizmodo

Quick and Dirty OCR of Facebook Papers Gizmodo has been working through the Facebook Papers and releasing the docs that they process and review. As lu

Bill Fitzgerald 2 Oct 28, 2021
7th place solution

SIIM-FISABIO-RSNA-COVID-19-Detection 7th place solution Validation: We used iterative-stratification with 5 folds (https://github.com/trent-b/iterativ

11 Jul 17, 2022
A simple Security Camera created using Opencv in Python where images gets saved in realtime in your Dropbox account at every 5 seconds

Security Camera using Opencv & Dropbox This is a simple Security Camera created using Opencv in Python where images gets saved in realtime in your Dro

Arpit Rath 1 Jan 31, 2022
Python Computer Vision application that allows users to draw/erase on the screen using their webcam.

CV-Virtual-WhiteBoard The Virtual WhiteBoard is a project I made using the OpenCV and Mediapipe Python libraries. Using your index and middle finger y

Stephen Wang 1 Jan 07, 2022
Implementation of our paper 'PixelLink: Detecting Scene Text via Instance Segmentation' in AAAI2018

Code for the AAAI18 paper PixelLink: Detecting Scene Text via Instance Segmentation, by Dan Deng, Haifeng Liu, Xuelong Li, and Deng Cai. Contributions

758 Dec 22, 2022
Unofficial implementation of "TableNet: Deep Learning model for end-to-end Table detection and Tabular data extraction from Scanned Document Images"

TableNet Unofficial implementation of ICDAR 2019 paper : TableNet: Deep Learning model for end-to-end Table detection and Tabular data extraction from

Jainam Shah 243 Dec 30, 2022