A logical, reasonably standardized, but flexible project structure for doing and sharing data science work.

Overview

Cookiecutter Data Science

A logical, reasonably standardized, but flexible project structure for doing and sharing data science work.

Project homepage

Requirements to use the cookiecutter template:


  • Python 2.7 or 3.5+
  • Cookiecutter Python package >= 1.4.0: This can be installed with pip by or conda depending on how you manage your Python packages:
$ pip install cookiecutter

or

$ conda config --add channels conda-forge
$ conda install cookiecutter

To start a new project, run:


cookiecutter -c v1 https://github.com/drivendata/cookiecutter-data-science

asciicast

New version of Cookiecutter Data Science


Cookiecutter data science is moving to v2 soon, which will entail using the command ccds ... rather than cookiecutter .... The cookiecutter command will continue to work, and this version of the template will still be available. To use the legacy template, you will need to explicitly use -c v1 to select it. Please update any scripts/automation you have to append the -c v1 option (as above), which is available now.

The resulting directory structure


The directory structure of your new project looks like this:

├── LICENSE
├── Makefile           <- Makefile with commands like `make data` or `make train`
├── README.md          <- The top-level README for developers using this project.
├── data
│   ├── external       <- Data from third party sources.
│   ├── interim        <- Intermediate data that has been transformed.
│   ├── processed      <- The final, canonical data sets for modeling.
│   └── raw            <- The original, immutable data dump.
│
├── docs               <- A default Sphinx project; see sphinx-doc.org for details
│
├── models             <- Trained and serialized models, model predictions, or model summaries
│
├── notebooks          <- Jupyter notebooks. Naming convention is a number (for ordering),
│                         the creator's initials, and a short `-` delimited description, e.g.
│                         `1.0-jqp-initial-data-exploration`.
│
├── references         <- Data dictionaries, manuals, and all other explanatory materials.
│
├── reports            <- Generated analysis as HTML, PDF, LaTeX, etc.
│   └── figures        <- Generated graphics and figures to be used in reporting
│
├── requirements.txt   <- The requirements file for reproducing the analysis environment, e.g.
│                         generated with `pip freeze > requirements.txt`
│
├── setup.py           <- makes project pip installable (pip install -e .) so src can be imported
├── src                <- Source code for use in this project.
│   ├── __init__.py    <- Makes src a Python module
│   │
│   ├── data           <- Scripts to download or generate data
│   │   └── make_dataset.py
│   │
│   ├── features       <- Scripts to turn raw data into features for modeling
│   │   └── build_features.py
│   │
│   ├── models         <- Scripts to train models and then use trained models to make
│   │   │                 predictions
│   │   ├── predict_model.py
│   │   └── train_model.py
│   │
│   └── visualization  <- Scripts to create exploratory and results oriented visualizations
│       └── visualize.py
│
└── tox.ini            <- tox file with settings for running tox; see tox.readthedocs.io

Contributing

We welcome contributions! See the docs for guidelines.

Installing development requirements


pip install -r requirements.txt

Running the tests


py.test tests
Datamol is a python library to work with molecules

Datamol is a python library to work with molecules. It's a layer built on top of RDKit and aims to be as light as possible.

datamol 276 Dec 19, 2022
Discontinuous Galerkin finite element method (DGFEM) for Maxwell Equations

DGFEM Maxwell Equations Discontinuous Galerkin finite element method (DGFEM) for Maxwell Equations. Work in progress. Currently, the 1D Maxwell equati

Rafael de la Fuente 9 Aug 16, 2022
A framework for feature exploration in Data Science

Beehive A framework for feature exploration in Data Science Background What do we do when we finish one episode of feature exploration in a jupyter no

Steven IJ 1 Jan 03, 2022
Book on Julia for Data Science

Book on Julia for Data Science

Julia Data Science 349 Dec 25, 2022
An open-source application for biological image analysis

CellProfiler is a free open-source software designed to enable biologists without training in computer vision or programming to quantitatively measure

CellProfiler 734 Jan 08, 2023
Zipline, a Pythonic Algorithmic Trading Library

Zipline is a Pythonic algorithmic trading library. It is an event-driven system for backtesting. Zipline is currently used in production as the backte

Quantopian, Inc. 15.7k Jan 07, 2023
PennyLane is a cross-platform Python library for differentiable programming of quantum computers.

PennyLane is a cross-platform Python library for differentiable programming of quantum computers. Train a quantum computer the same way as a neural network.

PennyLaneAI 1.6k Jan 04, 2023
ReproZip is a tool that simplifies the process of creating reproducible experiments from command-line executions, a frequently-used common denominator in computational science.

ReproZip ReproZip is a tool aimed at simplifying the process of creating reproducible experiments from command-line executions, a frequently-used comm

267 Jan 01, 2023
Validated, scalable, community developed variant calling, RNA-seq and small RNA analysis

Validated, scalable, community developed variant calling, RNA-seq and small RNA analysis. You write a high level configuration file specifying your in

Blue Collar Bioinformatics 915 Dec 29, 2022
Program that estimates antiderivatives utilising Maclaurin series.

AntiderivativeEstimator Program that estimates antiderivatives utilising Maclaurin series. Setup: Needs Python 3 and Git installed and added to PATH.

James Watson 3 Aug 04, 2021
A simple computer program made with Python on the brachistochrone curve.

Brachistochrone-curve This is a simple computer program made with Python on the brachistochrone curve. I decided to write it after a physics lesson on

Diego Romeo 1 Dec 16, 2021
Kedro is an open-source Python framework for creating reproducible, maintainable and modular data science code

A Python framework for creating reproducible, maintainable and modular data science code.

QuantumBlack Labs 7.9k Jan 01, 2023
collection of interesting Computer Science resources

collection of interesting Computer Science resources

Kirill Bobyrev 137 Dec 22, 2022
Open Delmic Microscope Software

Odemis Odemis (Open Delmic Microscope Software) is the open-source microscopy software of Delmic B.V. Odemis is used for controlling microscopes of De

Delmic 32 Dec 14, 2022
Data intensive science for everyone.

InVesalius InVesalius generates 3D medical imaging reconstructions based on a sequence of 2D DICOM files acquired with CT or MRI equipments. InVesaliu

Galaxy Project 1k Jan 08, 2023
CS 506 - Computational Tools for Data Science

CS 506 - Computational Tools for Data Science Code, slides, and notes for Boston University CS506 Fall 2021 The Final Project Repository can be found

Lance Galletti 14 Mar 23, 2022
CoCalc: Collaborative Calculation in the Cloud

logo CoCalc Collaborative Calculation and Data Science CoCalc is a virtual online workspace for calculations, research, collaboration and authoring do

SageMath, Inc. 1k Dec 29, 2022
CONCEPT (COsmological N-body CodE in PyThon) is a free and open-source simulation code for cosmological structure formation

CONCEPT (COsmological N-body CodE in PyThon) is a free and open-source simulation code for cosmological structure formation. The code should run on any Linux system, from massively parallel computer

Jeppe Dakin 62 Dec 08, 2022
Graphic notes on Gilbert Strang's "Linear Algebra for Everyone"

Graphic notes on Gilbert Strang's "Linear Algebra for Everyone"

Kenji Hiranabe 3.2k Jan 08, 2023
🍊 :bar_chart: :bulb: Orange: Interactive data analysis

Orange Data Mining Orange is a data mining and visualization toolbox for novice and expert alike. To explore data with Orange, one requires no program

Bioinformatics Laboratory 3.9k Jan 05, 2023