giving — the reactive logger

Related tags

Logginggiving
Overview

giving — the reactive logger

Documentation

giving is a simple, magical library that lets you log or "give" arbitrary data throughout a program and then process it as an event stream. You can use it to log to the terminal, to wandb or mlflow, to compute minimums, maximums, rolling means, etc., separate from your program's core logic.

  1. Inside your code, give() every object or datum that you may want to log or compute metrics about.
  2. Wrap your main loop with given() and define pipelines to map, filter and reduce the data you gave.

Examples

Code Output

Simple logging

with given().display():
    a, b = 10, 20
    give()
    give(a * b, c=30)
a: 10; b: 20
a * b: 200; c: 30

Extract values into a list

with given()["s"].values() as results:
    s = 0
    for i in range(5):
        s += i
        give(s)

print(results)
[0, 1, 3, 6, 10]

Reductions (min, max, count, etc.)

def collatz(n):
    while n != 1:
        give(n)
        n = (3 * n + 1) if n % 2 else (n // 2)

with given() as gv:
    gv["n"].max().print("max: {}")
    gv["n"].count().print("steps: {}")

    collatz(2021)
max: 6064
steps: 63

Using the eval method instead of with:

st, = given()["n"].count().eval(collatz, 2021)
print(st)
63

The kscan method

with given() as gv:
    gv.kscan().display()

    give(elk=1)
    give(rabbit=2)
    give(elk=3, wolf=4)
elk: 1
elk: 1; rabbit: 2
elk: 3; rabbit: 2; wolf: 4

The throttle method

with given() as gv:
    gv.throttle(1).display()

    for i in range(50):
        give(i)
        time.sleep(0.1)
i: 0
i: 10
i: 20
i: 30
i: 40

The above examples only show a small number of all the available operators.

Give

There are multiple ways you can use give. give returns None unless it is given a single positional argument, in which case it returns the value of that argument.

  • give(key=value)

    This is the most straightforward way to use give: you write out both the key and the value associated.

    Returns: None

  • x = give(value)

    When no key is given, but the result of give is assigned to a variable, the key is the name of that variable. In other words, the above is equivalent to give(x=value).

    Returns: The value

  • give(x)

    When no key is given and the result is not assigned to a variable, give(x) is equivalent to give(x=x). If the argument is an expression like x * x, the key will be the string "x * x".

    Returns: The value

  • give(x, y, z)

    Multiple arguments can be given. The above is equivalent to give(x=x, y=y, z=z).

    Returns: None

  • x = value; give()

    If give has no arguments at all, it will look at the immediately previous statement and infer what you mean. The above is equivalent to x = value; give(x=value).

    Returns: None

Important functions and methods

See here for more details.

Operator summary

Not all operators are listed here. See here for the complete list.

Filtering

  • filter: filter with a function
  • kfilter: filter with a function (keyword arguments)
  • where: filter based on keys and simple conditions
  • where_any: filter based on keys
  • keep: filter based on keys (+drop the rest)
  • distinct: only emit distinct elements
  • norepeat: only emit distinct consecutive elements
  • first: only emit the first element
  • last: only emit the last element
  • take: only emit the first n elements
  • take_last: only emit the last n elements
  • skip: suppress the first n elements
  • skip_last: suppress the last n elements

Mapping

  • map: map with a function
  • kmap: map with a function (keyword arguments)
  • augment: add extra keys using a mapping function
  • getitem: extract value for a specific key
  • sole: extract value from dict of length 1
  • as_: wrap as a dict

Reduction

  • reduce: reduce with a function
  • scan: emit a result at each reduction step
  • roll: reduce using overlapping windows
  • kmerge: merge all dictionaries in the stream
  • kscan: incremental version of kmerge

Arithmetic reductions

Most of these reductions can be called with the scan argument set to True to use scan instead of reduce. scan can also be set to an integer, in which case roll is used.

Wrapping

  • wrap: give a special key at the beginning and end of a block
  • wrap_inherit: give a special key at the beginning and end of a block
  • inherit: add default key/values for every give() in the block
  • wrap: plug a context manager at the location of a give.wrap
  • kwrap: same as wrap, but pass kwargs

Timing

  • debounce: suppress events that are too close in time
  • sample: sample an element every n seconds
  • throttle: emit at most once every n seconds

Debugging

  • breakpoint: set a breakpoint whenever data comes in. Use this with filters.
  • tag: assigns a special word to every entry. Use with breakword.
  • breakword: set a breakpoint on a specific word set by tag, using the BREAKWORD environment variable.

Other

  • accum: accumulate into a list
  • display: print out the stream (pretty).
  • print: print out the stream.
  • values: accumulate into a list (context manager)
  • subscribe: run a task on every element
  • ksubscribe: run a task on every element (keyword arguments)

ML ideas

Here are some ideas for using giving in a machine learning model training context:

> is shorthand for .subscribe() losses >> wandb.log # Print the minimum loss at the end losses["loss"].min().print("Minimum loss: {}") # Print the mean of the last 100 losses # * affix adds columns, so we will display i, loss and meanloss together # * The scan argument outputs the mean incrementally # * It's important that each affixed column has the same length as # the losses stream (or "table") losses.affix(meanloss=losses["loss"].mean(scan=100)).display() # Store all the losses in a list losslist = losses["loss"].accum() # Set a breakpoint whenever the loss is nan or infinite losses["loss"].filter(lambda loss: not math.isfinite(loss)).breakpoint() # Filter all the lines that have the "model" key: models = gv.where("model") # Write a checkpoint of the model at most once every 30 minutes models["model"].throttle(30 * 60).subscribe( lambda model: model.checkpoint() ) # Watch with wandb, but only once at the very beginning models["model"].first() >> wandb.watch # Write the final model (you could also use models.last()) models.where(final=True)["model"].subscribe( lambda model: model.save() ) # =========================================================== # Finally, execute the code. All the pipelines we defined above # will proceed as we give data. # =========================================================== main() ">
from giving import give, given


def main():
    model = Model()

    for i in range(niters):
        # Give the model. give looks at the argument string, so 
        # give(model) is equivalent to give(model=model)
        give(model)

        loss = model.step()

        # Give the iteration number and the loss (equivalent to give(i=i, loss=loss))
        give(i, loss)

    # Give the final model. The final=True key is there so we can filter on it.
    give(model, final=True)


if __name__ == "__main__":
    with given() as gv:
        # ===========================================================
        # Define our pipeline **before** running main()
        # ===========================================================

        # Filter all the lines that have the "loss" key
        # NOTE: Same as gv.filter(lambda values: "loss" in values)
        losses = gv.where("loss")

        # Print the losses on stdout
        losses.display()                 # always
        losses.throttle(1).display()     # OR: once every second
        losses.slice(step=10).display()  # OR: every 10th loss

        # Log the losses (and indexes i) with wandb
        # >> is shorthand for .subscribe()
        losses >> wandb.log

        # Print the minimum loss at the end
        losses["loss"].min().print("Minimum loss: {}")

        # Print the mean of the last 100 losses
        # * affix adds columns, so we will display i, loss and meanloss together
        # * The scan argument outputs the mean incrementally
        # * It's important that each affixed column has the same length as
        #   the losses stream (or "table")
        losses.affix(meanloss=losses["loss"].mean(scan=100)).display()

        # Store all the losses in a list
        losslist = losses["loss"].accum()

        # Set a breakpoint whenever the loss is nan or infinite
        losses["loss"].filter(lambda loss: not math.isfinite(loss)).breakpoint()


        # Filter all the lines that have the "model" key:
        models = gv.where("model")

        # Write a checkpoint of the model at most once every 30 minutes
        models["model"].throttle(30 * 60).subscribe(
            lambda model: model.checkpoint()
        )

        # Watch with wandb, but only once at the very beginning
        models["model"].first() >> wandb.watch

        # Write the final model (you could also use models.last())
        models.where(final=True)["model"].subscribe(
            lambda model: model.save()
        )


        # ===========================================================
        # Finally, execute the code. All the pipelines we defined above
        # will proceed as we give data.
        # ===========================================================
        main()
Owner
Olivier Breuleux
Olivier Breuleux
A Fast, Extensible Progress Bar for Python and CLI

tqdm tqdm derives from the Arabic word taqaddum (تقدّم) which can mean "progress," and is an abbreviation for "I love you so much" in Spanish (te quie

tqdm developers 23.7k Jan 01, 2023
Integrates a UPS monitored by NUT into OctoPrint

OctoPrint UPS This OctoPrint plugin interfaces with a UPS monitored by NUT (Network UPS Tools). Requirements NUT must be configured by the user. This

Shawn Bruce 11 Jul 05, 2022
Track Nano accounts and notify via log file or email

nano-address-notifier Track accounts and notify via log file or email Required python libs

Joohansson (Json) 4 Nov 08, 2021
Splunk Add-On to collect audit log events from Github Enterprise Cloud

GitHub Enterprise Audit Log Monitoring Splunk modular input plugin to fetch the enterprise audit log from GitHub Enterprise Support for modular inputs

Splunk GitHub 12 Aug 18, 2022
Outlog it's a library to make logging a simple task

outlog Outlog it's a library to make logging a simple task!. I'm a lazy python user, the times that i do logging on my apps it's hard to do, a lot of

ZSendokame 2 Mar 05, 2022
A lightweight logging library for python applications

cakelog a lightweight logging library for python applications This is a very small logging library to make logging in python easy and simple. config o

2 Jan 05, 2022
This is a wonderful simple python tool used to store the keyboard log.

Keylogger This is a wonderful simple python tool used to store the keyboard log. Record your keys. It will capture passwords and credentials in a comp

Rithin Lehan 2 Nov 25, 2021
Robust and effective logging for Python 2 and 3.

Robust and effective logging for Python 2 and 3.

Chris Hager 1k Jan 04, 2023
APT-Hunter is Threat Hunting tool for windows event logs

APT-Hunter is Threat Hunting tool for windows event logs which made by purple team mindset to provide detect APT movements hidden in the sea of windows event logs to decrease the time to uncover susp

824 Jan 08, 2023
Monitor and log Network and Disks statistics in MegaBytes per second.

iometrics Monitor and log Network and Disks statistics in MegaBytes per second. Install pip install iometrics Usage Pytorch-lightning integration from

Leo Gallucci 17 May 03, 2022
The new Python SDK for Sentry.io

sentry-python - Sentry SDK for Python This is the next line of the Python SDK for Sentry, intended to replace the raven package on PyPI. from sentry_s

Sentry 1.4k Dec 31, 2022
Display tabular data in a visually appealing ASCII table format

PrettyTable Installation Install via pip: python -m pip install -U prettytable Install latest development version: python -m pip install -U git+https

Jazzband 924 Jan 05, 2023
Lazy Profiler is a simple utility to collect CPU, GPU, RAM and GPU Memory stats while the program is running.

lazyprofiler Lazy Profiler is a simple utility to collect CPU, GPU, RAM and GPU Memory stats while the program is running. Installation Use the packag

Shankar Rao Pandala 28 Dec 09, 2022
Translating symbolicated Apple JSON format crash log into our old friends :)

CrashTranslation Translating symbolicated Apple JSON format crash log into our old friends :) Usage python3 translation.py -i {input_sybolicated_json_

Kam-To 11 May 16, 2022
🐑 Syslog Simulator hazır veya kullanıcıların eklediği logları belirtilen adreslere ve port'a seçilen döngüde syslog ile gönderilmesini sağlayan araçtır. | 🇹🇷

syslogsimulator hazır ürün loglarını SIEM veya log toplayıcısına istediğiniz portta belirli sürelerde göndermeyi sağlayan küçük bir araçtır.

Enes Aydın 3 Sep 28, 2021
Logging system for the TPC software.

tpc_logger Logging system for the TPC software. The TPC Logger class provides a singleton for logging information within C++ code or in the python API

UC Davis Machine Learning 1 Jan 10, 2022
Yaml - Loggers are like print() statements

Upgrade your print statements Loggers are like print() statements except they also include loads of other metadata: timestamp msg (same as print!) arg

isaac peterson 38 Jul 20, 2022
Log processor for nginx or apache that extracts user and user sessions and calculates other types of useful data for bot detection or traffic analysis

Log processor for nginx or apache that extracts user and user sessions and calculates other types of useful data for bot detection or traffic analysis

David Puerta Martín 1 Nov 11, 2021
A Python package which supports global logfmt formatted logging.

Python Logfmter A Python package which supports global logfmt formatted logging. Install $ pip install logfmter Usage Before integrating this library,

Joshua Taylor Eppinette 15 Dec 29, 2022
Ransomware leak site monitoring

RansomWatch RansomWatch is a ransomware leak site monitoring tool. It will scrape all of the entries on various ransomware leak sites, store the data

Zander Work 278 Dec 31, 2022