Find target hash collisions for Apple's NeuralHash perceptual hash function.💣

Overview

neural-hash-collider

Find target hash collisions for Apple's NeuralHash perceptual hash function.

For example, starting from a picture of this cat, we can find an adversarial image that has the same hash as the picture of the dog in this post:

python collide.py --image cat.jpg --target 59a34eabe31910abfb06f308

Cat image with NeuralHash 59a34eabe31910abfb06f308 Dog image with NeuralHash 59a34eabe31910abfb06f308

We can confirm the hash collision using nnhash.py from AsuharietYgvar/AppleNeuralHash2ONNX:

$ python nnhash.py dog.png
59a34eabe31910abfb06f308
$ python nnhash.py adv.png
59a34eabe31910abfb06f308

How it works

NeuralHash is a perceptual hash function that uses a neural network. Images are resized to 360x360 and passed through a neural network to produce a 128-dimensional feature vector. Then, the vector is projected onto R^96 using a 128x96 "seed" matrix. Finally, to produce a 96-bit hash, the 96-dimensional vector is thresholded: negative entries turn into a 0 bit, and non-negative entries turn into a 1 bit.

This entire process, except for the thresholding, is differentiable, so we can use gradient descent to find hash collisions. This is a well-known property of neural networks, that they are vulnerable to adversarial examples.

We can define a loss that captures how close an image is to a given target hash: this loss is basically just the NeuralHash algorithm as described above, but with the final "hard" thresholding step tweaked so that it is "soft" (in particular, differentiable). Exactly how this is done (choices of activation functions, parameters, etc.) can affect convergence, so it can require some experimentation. After choosing the loss function, we can follow the standard method to find adversarial examples for neural networks: gradient descent.

Details

The implementation currently does an alternating projections style attack to find an adversarial example that has the intended hash and also looks similar to the original. See collide.py for the full details. The implementation uses two different loss functions: one measures the distance to the target hash, and the other measures the quality of the perturbation (l2 norm + total variation). We first optimize for a collision, focusing only on matching the target hash. Once we find a projection, we alternate between minimizing the perturbation and ensuring that the hash value does not change. The attack has a number of parameters; run python collide.py --help or refer to the code for a full list. Tweaking these parameters can make a big difference in convergence time and the quality of the output.

The implementation also supports a flag --blur [sigma] that blurs the perturbation on every step of the search. This can slow down or break convergence, but on some examples, it can be helpful for getting results that look more natural and less like glitch art.

Examples

Reproducing the Lena/Barbara result from this post:

The first image above is the original Lena image. The second was produced with --target a426dae78cc63799d01adc32 to collide with Barbara. The third was produced with the additional argument --blur 1.0. The fourth is the original Barbara image. Checking their hashes:

$ python nnhash.py lena.png
32dac883f7b91bbf45a48296
$ python nnhash.py lena-adv.png
a426dae78cc63799d01adc32
$ python nnhash.py lena-adv-blur-1.0.png
a426dae78cc63799d01adc32
$ python nnhash.py barbara.png
a426dae78cc63799d01adc32

Reproducing the Picard/Sidious result from this post:

The first image above is the original Picard image. The second was produced with --target e34b3da852103c3c0828fbd1 --tv-weight 3e-4 to collide with Sidious. The third was produced with the additional argument --blur 0.5. The fourth is the original Sidious image. Checking their hashes:

$ python nnhash.py picard.png
73fae120ad3191075efd5580
$ python nnhash.py picard-adv.png
e34b2da852103c3c0828fbd1
$ python nnhash.py picard-adv-blur-0.5.png
e34b2da852103c3c0828fbd1
$ python nnhash.py sidious.png
e34b2da852103c3c0828fbd1

Prerequisites

  • Get Apple's NeuralHash model following the instructions in AsuharietYgvar/AppleNeuralHash2ONNX and either put all the files in this directory or supply the --model / --seed arguments
  • Install Python dependencies: pip install -r requirements.txt

Usage

Run python collide.py --image [path to image] --target [target hash] to generate a hash collision. Run python collide.py --help to see all the options, including some knobs you can tweak, like the learning rate and some other parameters.

Limitations

The code in this repository is intended to be a demonstration, and perhaps a starting point for other exploration. Tweaking the implementation (choice of loss function, choice of parameters, etc.) might produce much better results than this code currently achieves.

Owner
Anish Athalye
grad student @mit-pdos
Anish Athalye
Music Thumbnail Maker

Music Thumbnail Installing pip install TMFrame

krypton 4 Jan 28, 2022
MikuMikuRig是一款集生成控制器,自动导入动画,自动布料为一体的blender插件

Miku_Miku_Rig MikuMikuRig是一款集生成控制器,自动导入动画,自动布料为一体的blender插件。 MikumiKurig is a Blender plugin that can generates rig, automatically imports animations

小威廉伯爵 342 Dec 29, 2022
Image manipulation package used for EpicBot.

Image manipulation package used for EpicBot.

Nirlep_5252_ 7 May 26, 2022
Make your master artistic punk avatar through machine learning world famous paintings

Master-art-punk Make your master artistic punk avatar through machine learning world famous paintings. 通过机器学习世界名画制作属于你的大师级艺术朋克头像 Nowadays, NFT is beco

蒋虎成 23 Jan 04, 2022
A simple Streamlit Component to compare images in Streamlit apps. It integrates Knightlab's JuxtaposeJS

streamlit-image-juxtapose A simple Streamlit Component to compare images in Streamlit apps using Knightlab's JuxtaposeJS. The images are saved to the

Robin 30 Dec 31, 2022
Scramb.py is a region based JPEG Image Scrambler and Descrambler written in Python

Scramb.py Scramb.py is a region based JPEG Image Scrambler and Descrambler written in Python. Main features Scramb.py can scramble images regions. So

47 Dec 25, 2022
An automated Comic Book downloader (cbr/cbz) for use with SABnzbd, NZBGet and torrents

Mylar Note that feature development has stopped as we have moved to Mylar3. EOL for this project is the end of 2020 and will no longer be supported. T

979 Dec 13, 2022
reversable image censoring tool

StupidCensor a REVERSABLE image censoring tool to reversably mosiac censor jpeg files to temporarily remove image details not allowed on most websites

2 Jan 28, 2022
Image enhancing model for making a blurred image to be somehow clearer than before

This is a very small prject which helps in enhancing the images by taking a Input images. This project has many features like detcting the faces and enhaning the faces itself and also a feature which

3 Dec 03, 2021
Viewer for NFO files

NFO Viewer NFO Viewer is a simple viewer for NFO files, which are "ASCII" art in the CP437 codepage. The advantages of using NFO Viewer instead of a t

Osmo Salomaa 114 Dec 29, 2022
Pixel Brush Processing Unit

Pixel Brush Processing Unit The Pixel Brush Processing Unit (PBPU for short) is a simple 4-Bit CPU I designed in Logisim while I was still in school a

Pixel Brush 2 Nov 03, 2022
A functional and efficient python implementation of the 3D version of Maxwell's equations

py-maxwell-fdfd Solving Maxwell's equations via A python implementation of the 3D curl-curl E-field equations. This code contains additional work to e

Nathan Zhao 12 Dec 11, 2022
3D Reconstruction Software

Meshroom is a free, open-source 3D Reconstruction Software based on the AliceVision Photogrammetric Computer Vision framework. Learn more details abou

AliceVision 8.7k Jan 02, 2023
Napari simpleitk image processing

napari-simpleitk-image-processing (n-SimpleITK) Process images using SimpleITK in napari Usage Filters of this napari plugin can be found in the Tools

Robert Haase 11 Dec 19, 2022
GIMP script to export bitmap as GRAPHICS 4 file (aka SCREEN 5)

gimpfu-msx-gr4.py GIMP script to export bitmap as GRAPHICS 4 file (aka SCREEN 5). GRAPHICS 4 specs are: 256x212 (or 256x192); 16 color palette (from 5

Pedro de Medeiros 4 Oct 17, 2022
An esoteric visual language that takes image files as input based on a multi-tape turing machine, designed for compatibility with C.

vizh An esoteric visual language that takes image files as input based on a multi-tape turing machine, designed for compatibility with C. Overview Her

Sy Brand 228 Dec 17, 2022
Python script to generate vector graphics of an oriented lattice unit cell

unitcell Python script to generate vector graphics of an oriented lattice unit cell Examples unitcell --type hexagonal --eulers 12 23 34 --axes --crys

Philip Eisenlohr 2 Dec 10, 2021
Converting Images Into Minecraft Houses

Converting Images Into Minecraft Houses In this particular project, we turned a 2D Image into Minecraft pixel art and then scaled it in 3D such that i

Mathias Oliver Valdbjørn Jørgensen 1 Feb 02, 2022
An executor that wraps 3D mesh models and encodes 3D content documents to d-dimension vector.

3D Mesh Encoder An Executor that receives Documents containing point sets data in its blob attribute, with shape (N, 3) and encodes it to embeddings o

Jina AI 11 Dec 14, 2022
Pure Python bindings for the pure C++11/OpenCL Qrack quantum computer simulator library

pyqrack Pure Python bindings for the pure C++11/OpenCL Qrack quantum computer simulator library (PyQrack is just pure Qrack.) IMPORTANT: You must buil

vm6502q 6 Jul 21, 2022